These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36616498)

  • 61. Copaiba oil and vegetal tannin as functionalizing agents for açai nanofibril films: valorization of forest wastes from Amazonia.
    Scatolino MV; Bufalino L; Dias MC; Mendes LM; da Silva MS; Tonoli GHD; de Souza TM; Junior FTA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66422-66437. PubMed ID: 35501446
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp.
    Tajik M; Torshizi HJ; Resalati H; Hamzeh Y
    Carbohydr Polym; 2018 Aug; 194():1-8. PubMed ID: 29801816
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradable, Flexible and Ultraviolet Blocking Nanocellulose Composite Film Incorporated with Lignin Nanoparticles.
    Bian H; Shu X; Su W; Luo D; Dong M; Liu X; Ji X; Dai H
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499190
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cellulose Nanofiber Films and Their Vibration Energy Harvesting.
    Lee SH; Kim J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016041
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation and characterization of polyvinyl alcohol-piperic acid composite film for potential food packaging applications.
    Gowsia I; Mir FA; Banday JA
    Prog Biomater; 2022 Sep; 11(3):281-295. PubMed ID: 35895189
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane.
    Kim GH; Kang DH; Jung BN; Shim JK
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An Energy-Efficient One-Pot Swelling/Esterification Method to Prepare Cellulose Nanofibers with Uniform Diameter.
    Song Y; Chen W; Niu X; Fang G; Min H; Pan H
    ChemSusChem; 2018 Nov; 11(21):3714-3718. PubMed ID: 30188012
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals.
    Sirviö JA; Honkaniemi S; Visanko M; Liimatainen H
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19691-9. PubMed ID: 26280660
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility.
    Chen X; Chen C; Zhang H; Huang Y; Yang J; Sun D
    Carbohydr Polym; 2017 Oct; 173():547-555. PubMed ID: 28732898
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions.
    Lu P; Liu R; Liu X; Wu M
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30297645
    [TBL] [Abstract][Full Text] [Related]  

  • 71. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan.
    Xie B; Zhang X; Luo X; Wang Y; Li Y; Li B; Liu S
    Food Chem; 2020 Nov; 331():127108. PubMed ID: 32593036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper.
    Hu F; Zeng J; Cheng Z; Wang X; Wang B; Zeng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117474. PubMed ID: 33357928
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments.
    Li P; Sirviö JA; Haapala A; Liimatainen H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2846-2855. PubMed ID: 27997111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films.
    Huang L; Zhao H; Yi T; Qi M; Xu H; Mo Q; Huang C; Wang S; Liu Y
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32326505
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films.
    Wang X; Jia Y; Liu Z; Miao J
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960938
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multifunctional Bacterial Cellulose Films Enabled by Deep Eutectic Solvent-Extracted Lignin.
    Dai Q; Bai Y; Fu B; Yang F
    ACS Omega; 2023 Feb; 8(8):7430-7437. PubMed ID: 36873000
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity.
    Wang X; Wang S; Liu W; Wang S; Zhang L; Sang R; Hou Q; Li J
    Carbohydr Polym; 2019 Dec; 225():115213. PubMed ID: 31521302
    [TBL] [Abstract][Full Text] [Related]  

  • 80. One-Step Treatment for Upgrading Bleached Bamboo Pulp to Dissolving Pulp High Solvency in Green Alkali/Urea Aqueous Solution.
    Shang JP; Liang P; Peng Y; Xu DF; Li YB
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.