These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36616648)

  • 1. A Fiber-Based Chromatic Dispersion Probe for Simultaneous Measurement of
    Zhao R; Chen C; Xiong X; Chen YL; Ju BF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fiber-Based Chromatic Dispersion Probe for Simultaneous Measurement of Dual-Axis Absolute and Relative Displacement.
    Zhao R; Chen C; Xiong X; Chen YL; Ju BF
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic Confocal Displacement Sensor with Optimized Dispersion Probe and Modified Centroid Peak Extraction Algorithm.
    Bai J; Li X; Wang X; Zhou Q; Ni K
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-wavelength confocal displacement sensing using a highly dispersive flat-field concave grating.
    Zhao J; Cheng H; Feng Y; Yan S; Cheng W
    Appl Opt; 2024 Feb; 63(5):1347-1354. PubMed ID: 38437315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry.
    Lee JY; Kim DY
    Opt Express; 2006 Nov; 14(24):11608-15. PubMed ID: 19529580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional micro displacement sensor based on fiber SPR mechanisms.
    Wei Y; Shi C; Liu C; Liu C; Wang X; Tang Y; Wang R; Liu Z
    Opt Express; 2023 Feb; 31(4):6411-6425. PubMed ID: 36823898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact Chromatic Confocal Lens with Large Measurement Range.
    He N; Hu H; Cui Z; Xu X; Zhou D; Chen Y; Gong P; Chen Y; Kuang C
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler.
    Bai J; Li X; Zhou Q; Ni K; Wang X
    Opt Express; 2019 Apr; 27(8):10961-10973. PubMed ID: 31052948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Optical Configuration for the Surface Encoder with an Expanded
    Hong Y; Sato R; Shimizu Y; Matsukuma H; Gao W
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the displacement response in chromatic confocal microscopy with a hybrid radial basis function network.
    Lu W; Chen C; Wang J; Leach R; Zhang C; Liu X; Lei Z; Yang W; Jiang XJ
    Opt Express; 2019 Aug; 27(16):22737-22752. PubMed ID: 31510560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures.
    Zou L; Ni H; Zhang P; Ding X
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal probe based on the second harmonic generation for measurement of linear and angular displacements.
    Sato R; Shimizu Y; Shimizu H; Matsukuma H; Gao W
    Opt Express; 2023 Mar; 31(7):11982-11993. PubMed ID: 37155820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement.
    Liu H; Wang B; Wang R; Wang M; Yu D; Wang W
    Opt Lett; 2019 Jul; 44(14):3554-3557. PubMed ID: 31305571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods.
    Grósz T; Kovács AP; Kiss M; Szipőcs R
    Appl Opt; 2014 Mar; 53(9):1929-37. PubMed ID: 24663472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Littrow 3D measurement based on 2D grating dual-channel equal-optical path interference.
    Yin Y; Liu L; Bai Y; Jirigalantu ; Yu H; Bayanheshig ; Liu Z; Li W
    Opt Express; 2022 Nov; 30(23):41671-41684. PubMed ID: 36366638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning optical coherence tomography probe for in vivo imaging and displacement measurements in the cochlea.
    Lin NC; Fallah E; Strimbu CE; Hendon CP; Olson ES
    Biomed Opt Express; 2019 Feb; 10(2):1032-1043. PubMed ID: 30800530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a broadband highly dispersive pure silica photonic crystal fiber.
    Subbaraman H; Ling T; Jiang Y; Chen MY; Cao P; Chen RT
    Appl Opt; 2007 Jun; 46(16):3263-8. PubMed ID: 17514284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatic dispersion measurement along both polarization directions of a birefringent hollow-core photonic crystal fiber using spectral interferometry.
    Grósz T; Kovács AP; Varjú K
    Appl Opt; 2017 Jul; 56(19):5369-5376. PubMed ID: 29047493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts.
    Cui J; Feng K; Hu Y; Li J; Dang H; Tan J
    Opt Express; 2015 Dec; 23(26):32926-40. PubMed ID: 26831960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber chromatic confocal method with a tilt-coupling source module for axial super-resolution.
    Sun Z; Huang X; Yang C
    Opt Express; 2023 Nov; 31(23):39153-39168. PubMed ID: 38018001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.