These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36616655)

  • 1. Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion.
    Poulet Y; Brassart F; Simonetti E; Pillet H; Faupin A; Sauret C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds.
    Guo W; Liu Q; Huang P; Wang D; Shi L; Han D
    PeerJ; 2023; 11():e15792. PubMed ID: 37581118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of wheelchair user interface and personal characteristics on static and dynamic pretibial skin pressures in elite wheelchair racers, a pilot study.
    Rice I; Peters J; Rice L; Jan YK
    J Spinal Cord Med; 2019 Sep; 42(5):613-621. PubMed ID: 30129885
    [No Abstract]   [Full Text] [Related]  

  • 7. Alterations in shoulder kinematics are associated with shoulder pain during wheelchair propulsion sprints.
    Briley SJ; Vegter RJK; Goosey-Tolfrey VL; Mason BS
    Scand J Med Sci Sports; 2022 Aug; 32(8):1213-1223. PubMed ID: 35620900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes.
    Mason BS; Vegter RJK; Paulson TAW; Morrissey D; van der Scheer JW; Goosey-Tolfrey VL
    Gait Posture; 2018 Sep; 65():151-156. PubMed ID: 30558924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical assessment of wheelchair racing performance kinetics using accelerometers.
    Lewis AR; Phillips EJ; Robertson WSP; Grimshaw PN; Portus M; Winter J
    Sports Biomech; 2021 Dec; 20(8):1001-1014. PubMed ID: 31354108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair racing sports science: a review.
    Cooper RA
    J Rehabil Res Dev; 1990; 27(3):295-312. PubMed ID: 2205719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimanual wheelchair propulsion by people with severe hemiparesis after stroke.
    Smith BW; Bueno DR; Zondervan DK; Montano L; Reinkensmeyer DJ
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):49-62. PubMed ID: 31248296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.
    Wang YT; Vrongistinos KD; Xu D
    J Appl Biomech; 2008 Aug; 24(3):280-7. PubMed ID: 18843158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From theory to practice: Monitoring mechanical power output during wheelchair field and court sports using inertial measurement units.
    van Dijk MP; Hoozemans MJM; Berger MAM; Veeger HEJ
    J Biomech; 2024 Mar; 166():112052. PubMed ID: 38560959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics of sport wheelchair propulsion.
    Coutts KD
    J Rehabil Res Dev; 1990; 27(1):21-6. PubMed ID: 2308081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic analysis of trained wheelchair racers during two speeds of propulsion.
    Goosey-Tolfrey VL; Fowler NE; Campbell IG; Iwnicki SD
    Med Eng Phys; 2001 May; 23(4):259-66. PubMed ID: 11427363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trunk motion influences mechanical power estimates during wheelchair propulsion.
    van Dijk MP; Hoozemans MJM; Berger MAM; Veeger DHEJ
    J Biomech; 2024 Jan; 163():111927. PubMed ID: 38211392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster analysis of novel isometric strength measures produces a valid and evidence-based classification structure for wheelchair track racing.
    Connick MJ; Beckman E; Vanlandewijck Y; Malone LA; Blomqvist S; Tweedy SM
    Br J Sports Med; 2018 Sep; 52(17):1123-1129. PubMed ID: 29175826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.