These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36616662)

  • 1. Transformer-Based Weed Segmentation for Grass Management.
    Jiang K; Afzaal U; Lee J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning.
    Wang Y; Zhang S; Dai B; Yang S; Song H
    Front Plant Sci; 2023; 14():1134932. PubMed ID: 36993854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weed Detection Using Deep Learning: A Systematic Literature Review.
    Murad NY; Mahmood T; Forkan ARM; Morshed A; Jayaraman PP; Siddiqui MS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning.
    Garibaldi-Márquez F; Flores G; Mercado-Ravell DA; Ramírez-Pedraza A; Valentín-Coronado LM
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised learning methods for weed detection in turf.
    Liu T; Zhai D; He F; Yu J
    Pest Manag Sci; 2024 Jun; 80(6):2552-2562. PubMed ID: 38265105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SorghumWeedDataset_Classification and SorghumWeedDataset_Segmentation datasets for classification, detection, and segmentation in deep learning.
    Justina MJ; Thenmozhi M
    Data Brief; 2024 Feb; 52():109935. PubMed ID: 38229925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust crop and weed segmentation under uncontrolled outdoor illumination.
    Jeon HY; Tian LF; Zhu H
    Sensors (Basel); 2011; 11(6):6270-83. PubMed ID: 22163954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks.
    Yu J; Sharpe SM; Schumann AW; Boyd NS
    Pest Manag Sci; 2019 Aug; 75(8):2211-2218. PubMed ID: 30672096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on weed identification in soybean fields based on the lightweight segmentation model DCSAnet.
    Yu H; Che M; Yu H; Ma Y
    Front Plant Sci; 2023; 14():1268218. PubMed ID: 38116146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
    Lambert JP; Childs DZ; Freckleton RP
    Pest Manag Sci; 2019 Aug; 75(8):2283-2294. PubMed ID: 30972939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and coverage estimation of purple nutsedge in turf with image classification neural networks.
    Jin X; Han K; Zhao H; Wang Y; Chen Y; Yu J
    Pest Manag Sci; 2024 Jul; 80(7):3504-3515. PubMed ID: 38436512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel deep learning-based method for detection of weeds in vegetables.
    Jin X; Sun Y; Che J; Bagavathiannan M; Yu J; Chen Y
    Pest Manag Sci; 2022 May; 78(5):1861-1869. PubMed ID: 35060294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming.
    Petit S; Munier-Jolain N; Bretagnolle V; Bockstaller C; Gaba S; Cordeau S; Lechenet M; Mézière D; Colbach N
    Environ Manage; 2015 Nov; 56(5):1078-90. PubMed ID: 26071767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformer-Based Semantic Segmentation for Extraction of Building Footprints from Very-High-Resolution Images.
    Song J; Zhu AX; Zhu Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wheat spike detection method based on Transformer.
    Zhou Q; Huang Z; Zheng S; Jiao L; Wang L; Wang R
    Front Plant Sci; 2022; 13():1023924. PubMed ID: 36340370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image.
    Yun C; Kim YH; Lee SJ; Im SJ; Park KR
    Plant Phenomics; 2023; 5():0031. PubMed ID: 37287583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning.
    Olsen A; Konovalov DA; Philippa B; Ridd P; Wood JC; Johns J; Banks W; Girgenti B; Kenny O; Whinney J; Calvert B; Azghadi MR; White RD
    Sci Rep; 2019 Feb; 9(1):2058. PubMed ID: 30765729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots.
    Champ J; Mora-Fallas A; Goëau H; Mata-Montero E; Bonnet P; Joly A
    Appl Plant Sci; 2020 Jul; 8(7):e11373. PubMed ID: 32765972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.
    Sun H; Liu T; Wang J; Zhai D; Yu J
    Pest Manag Sci; 2024 Jun; 80(6):2817-2826. PubMed ID: 38323798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.