These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36616694)

  • 1. Feature Selection Method Using Multi-Agent Reinforcement Learning Based on Guide Agents.
    Kim M; Bae J; Wang B; Ko H; Lim JS
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning.
    Baek S; Kim J; Yu H; Yang G; Sohn I; Cho Y; Park C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-agent reinforcement learning with approximate model learning for competitive games.
    Park YJ; Cho YS; Kim SB
    PLoS One; 2019; 14(9):e0222215. PubMed ID: 31509568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease.
    Salmanpour MR; Shamsaei M; Rahmim A
    Comput Methods Programs Biomed; 2021 Jul; 206():106131. PubMed ID: 34015757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proof of concept reinforcement learning based tool for non parametric population pharmacokinetics workflow optimization.
    Otalvaro JD; Yamada WM; Hernandez AM; Zuluaga AF; Chen R; Neely MN
    J Pharmacokinet Pharmacodyn; 2023 Feb; 50(1):33-43. PubMed ID: 36478350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strangeness-driven exploration in multi-agent reinforcement learning.
    Kim JB; Choi HB; Han YH
    Neural Netw; 2024 Apr; 172():106149. PubMed ID: 38306786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A traffic light control method based on multi-agent deep reinforcement learning algorithm.
    Liu D; Li L
    Sci Rep; 2023 Jun; 13(1):9396. PubMed ID: 37296308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.
    Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ;
    Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid cancer prediction based on multi-omics data and reinforcement learning state action reward state action (SARSA).
    Mohammed MA; Lakhan A; Abdulkareem KH; Garcia-Zapirain B
    Comput Biol Med; 2023 Mar; 154():106617. PubMed ID: 36753981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Punishment and Reward Backfill for Deep Q-Learning.
    Bonyadi MR; Wang R; Ziaei M
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8086-8093. PubMed ID: 35041613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep reinforcement learning for the direct optimization of gradient separations in liquid chromatography.
    Kensert A; Libin P; Desmet G; Cabooter D
    J Chromatogr A; 2024 Apr; 1720():464768. PubMed ID: 38442496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sortation Control Using Multi-Agent Deep Reinforcement Learning in
    Kim JB; Choi HB; Hwang GY; Kim K; Hong YG; Han YH
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Learning With Task Decomposition for Cooperative Multiagent Systems.
    Sun C; Liu W; Dong L
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):2054-2065. PubMed ID: 32554331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-Driven Multi-Agent Reinforcement Learning: A Novel Approach to Ultrasound Breast Tumor Segmentation.
    Karunanayake N; Moodleah S; Makhanov SS
    Diagnostics (Basel); 2023 Dec; 13(24):. PubMed ID: 38132195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.