These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36616709)

  • 21. Improvements in intelligibility of noisy reverberant speech using a binaural subband adaptive noise-cancellation processing scheme.
    Shields PW; Campbell DR
    J Acoust Soc Am; 2001 Dec; 110(6):3232-42. PubMed ID: 11785824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex Spectral Mapping for Single- and Multi-Channel Speech Enhancement and Robust ASR.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():1778-1787. PubMed ID: 33748326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An evaluation of the perceptual quality of phase-aware single-channel speech enhancement.
    Krawczyk-Becker M; Gerkmann T
    J Acoust Soc Am; 2016 Oct; 140(4):EL364. PubMed ID: 27794332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-stage hybrid neural beamformer for multi-channel speech enhancement.
    Kuang K; Yang F; Li J; Yang J
    J Acoust Soc Am; 2023 Jun; 153(6):3378. PubMed ID: 37342887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noise reduction results of an adaptive filtering technique for dual-microphone behind-the-ear hearing aids.
    Maj JB; Wouters J; Moonen M
    Ear Hear; 2004 Jun; 25(3):215-29. PubMed ID: 15179113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speech enhancement using a generic noise codebook.
    Srinivasan S; Rao Naidu DH
    J Acoust Soc Am; 2012 Aug; 132(2):EL161-7. PubMed ID: 22894316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speech enhancement for cochlear implant recipients.
    Wang D; Hansen JHL
    J Acoust Soc Am; 2018 Apr; 143(4):2244. PubMed ID: 29716262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Objective performance analysis of spherical microphone arrays for speech enhancement in rooms.
    Peled Y; Rafaely B
    J Acoust Soc Am; 2012 Sep; 132(3):1473-81. PubMed ID: 22978876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intelligibility prediction for speech mixed with white Gaussian noise at low signal-to-noise ratios.
    Graetzer S; Hopkins C
    J Acoust Soc Am; 2021 Feb; 149(2):1346. PubMed ID: 33639794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-based speech enhancement using a bone-conducted signal.
    Kechichian P; Srinivasan S
    J Acoust Soc Am; 2012 Mar; 131(3):EL262-7. PubMed ID: 22423818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of ideal mask-based speech enhancement algorithms for speech mixed with white noise at low mixture signal-to-noise ratios.
    Graetzer S; Hopkins C
    J Acoust Soc Am; 2022 Dec; 152(6):3458. PubMed ID: 36586840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of phase estimation on single-channel speech separation based on time-frequency masking.
    Mayer F; Williamson DS; Mowlaee P; Wang D
    J Acoust Soc Am; 2017 Jun; 141(6):4668. PubMed ID: 28679243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; Escabí M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-resolution envelope-power based model for speech intelligibility.
    Jørgensen S; Ewert SD; Dau T
    J Acoust Soc Am; 2013 Jul; 134(1):436-46. PubMed ID: 23862819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring and modeling speech intelligibility in real and loudspeaker-based virtual sound environments.
    Ahrens A; Marschall M; Dau T
    Hear Res; 2019 Jun; 377():307-317. PubMed ID: 30867112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception.
    Wu YI; Wong KT; Yuan X; Lau SK; Tang SK
    J Acoust Soc Am; 2012 May; 131(5):3891-902. PubMed ID: 22559365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.