These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36616732)

  • 1. Correlations between the EMG Structure of Movement Patterns and Activity of Postural Muscles in Able-Bodied and Wheelchair Fencers.
    Borysiuk Z; Blaszczyszyn M; Piechota K; Konieczny M; Cynarski WJ
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular, Perceptual, and Temporal Determinants of Movement Patterns in Wheelchair Fencing: Preliminary Study.
    Borysiuk Z; Nowicki T; Piechota K; Błaszczyszyn M
    Biomed Res Int; 2020; 2020():6584832. PubMed ID: 32462009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phenomenon of anticipation in fencing. An applicability approach.
    Borysiuk Z; Konieczny M; Błaszczyszyn M; Błach W; Obmiński Z
    Front Sports Act Living; 2024; 6():1387013. PubMed ID: 38725473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement Patterns of Polish National Paralympic Team Wheelchair Fencers with Regard To Muscle Activity and Co-Activation Time.
    Borysiuk Z; Błaszczyszyn M; Piechota K; Nowicki T
    J Hum Kinet; 2022 Apr; 82():223-232. PubMed ID: 36196343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal injuries in elite able-bodied and wheelchair foil fencers--a pilot study.
    Chung WM; Yeung S; Wong AY; Lam IF; Tse PT; Daswani D; Lee R
    Clin J Sport Med; 2012 May; 22(3):278-80. PubMed ID: 22430329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers.
    Błaszczyszyn M; Borysiuk Z; Piechota K; Kręcisz K; Zmarzły D
    BMC Sports Sci Med Rehabil; 2021 Oct; 13(1):140. PubMed ID: 34717749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and muscular coordination patterns during a high-level fencing assault.
    Guilhem G; Giroux C; Couturier A; Chollet D; Rabita G
    Med Sci Sports Exerc; 2014 Feb; 46(2):341-50. PubMed ID: 24441214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological demands of standing and wheelchair fencing in able-bodied fencers.
    Iglesias X; Rodríguez FA; Tarragó R; Bottoms L; Vallejo L; Rodríguez-Zamora L; Price M
    J Sports Med Phys Fitness; 2019 Apr; 59(4):569-574. PubMed ID: 29722255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance criteria for para-athletes in fencing.
    Marsan T; Landon Y; Navarro P; Watier B
    Sports Biomech; 2024 Jan; ():1-10. PubMed ID: 38193508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flèche versus Lunge as the Optimal Footwork Technique in Fencing.
    Borysiuk Z; Markowska N; Konieczny M; Kręcisz K; Błaszczyszyn M; Nikolaidis PT; Knechtle B; Pakosz P
    Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31261979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematical and EMG-classifications of a fencing attack.
    Frère J; Göpfert B; Nüesch C; Huber C; Fischer M; Wirz D; Friederich NF
    Int J Sports Med; 2011 Jan; 32(1):28-34. PubMed ID: 21086241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response timing and muscular coordination in fencing: a comparison of elite and novice fencers.
    Williams LR; Walmsley A
    J Sci Med Sport; 2000 Dec; 3(4):460-75. PubMed ID: 11235010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staying Out of Range: Increasing Attacking Distance in Fencing.
    Turner AN; Marshall G; Noto A; Chavda S; Atlay N; Kirby D
    Int J Sports Physiol Perform; 2017 Nov; 12(10):1319-1323. PubMed ID: 28290725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction force and EMG analyses of wheelchair transfers.
    Wang YT; Kim CK; Ford HT; Ford HT
    Percept Mot Skills; 1994 Oct; 79(2):763-6. PubMed ID: 7870500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-velocity characteristics of upper limb extension during maximal wheelchair sprinting performed by healthy able-bodied females.
    Hintzy F; Tordi N; Predine E; Rouillon JD; Belli A
    J Sports Sci; 2003 Nov; 21(11):921-6. PubMed ID: 14626371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk muscle activity during wheelchair ramp ascent and the influence of a geared wheel on the demands of postural control.
    Howarth SJ; Polgar JM; Dickerson CR; Callaghan JP
    Arch Phys Med Rehabil; 2010 Mar; 91(3):436-42. PubMed ID: 20298836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm-trunk coordination in wheelchair initiation displacement: A study of anticipatory and compensatory postural adjustments during different speeds and directions of propulsion.
    Chikh S; Garnier C; Faupin A; Pinti A; Boudet S; Azaiez F; Watelain E
    J Electromyogr Kinesiol; 2018 Jun; 40():16-22. PubMed ID: 29550640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pilot study to investigate shoulder muscle fatigue during a sustained isometric wheelchair-propulsion effort using surface EMG.
    Niemeyer LO; Aronow HU; Kasman GS
    Am J Occup Ther; 2004; 58(5):587-93. PubMed ID: 15481785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.