These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36616776)

  • 1. Quantifying the Influence of Surface Texture and Shape on Structure from Motion 3D Reconstructions.
    Nielsen MS; Nikolov I; Kruse EK; Garnæs J; Madsen CB
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rough or Noisy? Metrics for Noise Estimation in SfM Reconstructions.
    Nikolov I; Madsen C
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33050095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sabouri P; Arai TJ; Sawant A; Ruan D
    Med Phys; 2015 Nov; 42(11):6564-71. PubMed ID: 26520747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laryngeal surface reconstructions from monocular endoscopic videos: a structure from motion pipeline for periodic deformations.
    Regef J; Talasila L; Wiercigroch J; Lin RJ; Kahrs LA
    Int J Comput Assist Radiol Surg; 2024 Sep; 19(9):1895-1907. PubMed ID: 38652415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Field Primer for Monitoring Benthic Ecosystems using Structure-from-Motion Photogrammetry.
    Roach TNF; Yadav S; Caruso C; Dilworth J; Foley CM; Hancock JR; Huckeba J; Huffmyer AS; Hughes K; Kahkejian VA; Madin EMP; Matsuda SB; McWilliam M; Miller S; Santoro EP; Rocha de Souza M; Torres-Pullizaa D; Drury C; Madin JS
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33938881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion.
    Bhave S; Lingala SG; Newell JD; Nagle SK; Jacob M
    Invest Radiol; 2016 Jun; 51(6):387-99. PubMed ID: 26863578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D reconstruction of SEM images by use of optical photogrammetry software.
    Eulitz M; Reiss G
    J Struct Biol; 2015 Aug; 191(2):190-6. PubMed ID: 26073969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Structure from Motion (SfM) for Microscale 3D Surface Reconstruction.
    Um D; Lee S
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Barn Pig Weight Estimation Based on Body Measurements by Structure-from-Motion (SfM).
    Pezzuolo A; Milani V; Zhu D; Guo H; Guercini S; Marinello F
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30352969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-Cloud Method for Automated 3D Coronary Tree Reconstruction From Multiple Non-Simultaneous Angiographic Projections.
    Banerjee A; Galassi F; Zacur E; De Maria GL; Choudhury RP; Grau V
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1278-1290. PubMed ID: 31613752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods.
    Chen B; Christianson O; Wilson JM; Samei E
    Med Phys; 2014 Jul; 41(7):071909. PubMed ID: 24989387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.
    Müller K; Maier AK; Schwemmer C; Lauritsch G; De Buck S; Wielandts JY; Hornegger J; Fahrig R
    Phys Med Biol; 2014 Jun; 59(12):3121-38. PubMed ID: 24840084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data.
    Hahn J; Bruder H; Rohkohl C; Allmendinger T; Stierstorfer K; Flohr T; Kachelrieß M
    Med Phys; 2017 Nov; 44(11):5795-5813. PubMed ID: 28801918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological innovation in the recovery and analysis of 3D forensic footwear evidence: Structure from motion (SfM) photogrammetry.
    Larsen H; Budka M; Bennett MR
    Sci Justice; 2021 Jul; 61(4):356-368. PubMed ID: 34172124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint.
    Berger M; Müller K; Aichert A; Unberath M; Thies J; Choi JH; Fahrig R; Maier A
    Med Phys; 2016 Mar; 43(3):1235-48. PubMed ID: 26936708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for characterizing and matching CT image quality across CT scanners from different manufacturers.
    Winslow J; Zhang Y; Samei E
    Med Phys; 2017 Nov; 44(11):5705-5717. PubMed ID: 28865170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise Texture Deviation: A Measure for Quantifying Artifacts in Computed Tomography Images With Iterative Reconstructions.
    Morsbach F; Desbiolles L; Raupach R; Leschka S; Schmidt B; Alkadhi H
    Invest Radiol; 2017 Feb; 52(2):87-94. PubMed ID: 27548343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography.
    Bhagalia R; Pack JD; Miller JV; Iatrou M
    Med Phys; 2012 Jul; 39(7):4245-54. PubMed ID: 22830758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Open-Source Photogrammetry Workflow for Reconstructing 3D Models.
    Zhang C; Maga AM
    Integr Org Biol; 2023; 5(1):obad024. PubMed ID: 37465202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sawant A; Ruan D
    Med Phys; 2016 May; 43(5):2353. PubMed ID: 27147347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.