These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36616776)
21. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction. Moriya T; Acar E; Cheng RH; Ruotsalainen U J Struct Biol; 2015 Sep; 191(3):318-31. PubMed ID: 26193484 [TBL] [Abstract][Full Text] [Related]
23. Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system. Lu X; Ono E; Lu S; Zhang Y; Teng P; Aono M; Shimizu Y; Hosoi F; Omasa K Plant Methods; 2020; 16():118. PubMed ID: 32874194 [TBL] [Abstract][Full Text] [Related]
24. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes. Hu M; Penney G; Figl M; Edwards P; Bello F; Casula R; Rueckert D; Hawkes D Med Image Anal; 2012 Apr; 16(3):597-611. PubMed ID: 21195656 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of camera settings for photogrammetric reconstruction of humanoid phantoms for EBRT bolus and HDR surface brachytherapy applications. Bridger CA; Douglass MJJ; Reich PD; Santos AMC Phys Eng Sci Med; 2021 Jun; 44(2):457-471. PubMed ID: 33844156 [TBL] [Abstract][Full Text] [Related]
26. A critical assessment of the potential for Structure-from-Motion photogrammetry to produce high fidelity 3D dental models. Silvester CM; Hillson S Am J Phys Anthropol; 2020 Oct; 173(2):381-392. PubMed ID: 32748988 [TBL] [Abstract][Full Text] [Related]
27. Surface Reconstruction of the Pediatric Larynx via Structure from Motion Photogrammetry: A Pilot Study. Barbour MC; Amin SN; Friedman SD; Perez FA; Bly RA; Johnson KE; Parikh SR; Richardson CM; Dahl JP; Aliseda A Otolaryngol Head Neck Surg; 2024 Apr; 170(4):1195-1199. PubMed ID: 38168480 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data. Müller K; Schwemmer C; Hornegger J; Zheng Y; Wang Y; Lauritsch G; Rohkohl C; Maier AK; Schultz C; Fahrig R Med Phys; 2013 Mar; 40(3):031107. PubMed ID: 23464287 [TBL] [Abstract][Full Text] [Related]
29. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. Burns J; Delparte D; Gates RD; Takabayashi M PeerJ; 2015; 3():e1077. PubMed ID: 26207190 [TBL] [Abstract][Full Text] [Related]
31. [Analysis of Influencing Factors of Single Camera Photogrammetry in Forensic Three-Dimensional Reconstruction]. Zou DH; Wang JM; Chen YJ; Li ZD; Wang JW; Qin ZQ; Huang J Fa Yi Xue Za Zhi; 2020 Oct; 36(5):666-671. PubMed ID: 33295168 [TBL] [Abstract][Full Text] [Related]
32. Optical-CT gel-dosimetry. II: Optical artifacts and geometrical distortion. Oldham M; Kim L Med Phys; 2004 May; 31(5):1093-104. PubMed ID: 15191297 [TBL] [Abstract][Full Text] [Related]
33. A Spatiotemporal-Constrained Sorting Method for Motion-Robust 4D-MRI: A Feasibility Study. Wang C; Subashi E; Yin FF; Chang Z; Cai J Int J Radiat Oncol Biol Phys; 2019 Mar; 103(3):758-766. PubMed ID: 30321690 [TBL] [Abstract][Full Text] [Related]
34. Comparison of advanced iterative reconstruction methods for SPECT/CT. Knoll P; Kotalova D; Köchle G; Kuzelka I; Minear G; Mirzaei S; Sámal M; Zadrazil L; Bergmann H Z Med Phys; 2012 Feb; 22(1):58-69. PubMed ID: 21723716 [TBL] [Abstract][Full Text] [Related]
35. Seamless Texture Optimization for RGB-D Reconstruction. Fu Y; Yan Q; Liao J; Zhou H; Tang J; Xiao C IEEE Trans Vis Comput Graph; 2023 Mar; 29(3):1845-1859. PubMed ID: 34882557 [TBL] [Abstract][Full Text] [Related]
36. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes. Yu H; Pattichis MS; Agurto C; Beth Goens M Biomed Eng Online; 2011 Jan; 10():7. PubMed ID: 21251284 [TBL] [Abstract][Full Text] [Related]
37. Structure from motion photogrammetry in ecology: Does the choice of software matter? Forsmoo J; Anderson K; Macleod CJA; Wilkinson ME; DeBell L; Brazier RE Ecol Evol; 2019 Dec; 9(23):12964-12979. PubMed ID: 31871623 [TBL] [Abstract][Full Text] [Related]
38. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction. Zhi S; Kachelrieß M; Mou X Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608 [TBL] [Abstract][Full Text] [Related]
39. Impact of motion velocity on four-dimensional target volumes: a phantom study. Nakamura M; Narita Y; Sawada A; Matsugi K; Nakata M; Matsuo Y; Mizowaki T; Hiraoka M Med Phys; 2009 May; 36(5):1610-7. PubMed ID: 19544777 [TBL] [Abstract][Full Text] [Related]
40. Development and Validation of a Novel Methodological Pipeline to Integrate Neuroimaging and Photogrammetry for Immersive 3D Cadaveric Neurosurgical Simulation. Hanalioglu S; Romo NG; Mignucci-Jiménez G; Tunc O; Gurses ME; Abramov I; Xu Y; Sahin B; Isikay I; Tatar I; Berker M; Lawton MT; Preul MC Front Surg; 2022; 9():878378. PubMed ID: 35651686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]