These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36616806)

  • 1. An Anomaly Intrusion Detection for High-Density Internet of Things Wireless Communication Network Based Deep Learning Algorithms.
    Salman EH; Taher MA; Hammadi YI; Mahmood OA; Muthanna A; Koucheryavy A
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Intrusion Detection System for the Internet of Things via Deep Convolutional Neural Network and Feature Engineering.
    Ullah S; Ahmad J; Khan MA; Alkhammash EH; Hadjouni M; Ghadi YY; Saeed F; Pitropakis N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses.
    Albulayhi K; Smadi AA; Sheldon FT; Abercrombie RK
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm.
    Hashmi A; Barukab OM; Hamza Osman A
    PLoS One; 2024; 19(5):e0302294. PubMed ID: 38781186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNN-CNN: Dual Convolutional Neural Network Approach for Feature Selection and Attack Detection on Internet of Things Networks.
    Alabsi BA; Anbar M; Rihan SDA
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection.
    Zegarra Rodríguez D; Daniel Okey O; Maidin SS; Umoren Udo E; Kleinschmidt JH
    PLoS One; 2023; 18(10):e0286652. PubMed ID: 37844095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customised Intrusion Detection for an Industrial IoT Heterogeneous Network Based on Machine Learning Algorithms Called FTL-CID.
    Abosata N; Al-Rubaye S; Inalhan G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer-Learning-Based Intrusion Detection Framework in IoT Networks.
    Rodríguez E; Valls P; Otero B; Costa JJ; Verdú J; Pajuelo MA; Canal R
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrusion Detection in IoT Using Deep Learning.
    Banaamah AM; Ahmad I
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection Systems.
    El-Shafeiy E; Elsayed WM; Elwahsh H; Alsabaan M; Ibrahem MI; Elhady GF
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles.
    Ullah S; Khan MA; Ahmad J; Jamal SS; E Huma Z; Hassan MT; Pitropakis N; Arshad ; Buchanan WJ
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence-Driven Intrusion Detection in Software-Defined Wireless Sensor Networks: Towards Secure IoT-Enabled Healthcare Systems.
    Masengo Wa Umba S; Abu-Mahfouz AM; Ramotsoela D
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT).
    Javeed D; Gao T; Khan MT; Ahmad I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel adaptive network intrusion detection system for internet of things.
    Aravamudhan P; T K
    PLoS One; 2023; 18(4):e0283725. PubMed ID: 37083681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IoT-based intrusion detection system using convolution neural networks.
    Aljumah A
    PeerJ Comput Sci; 2021; 7():e721. PubMed ID: 34712796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things.
    Thamilarasu G; Chawla S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT.
    Khan MA; Khan MA; Jan SU; Ahmad J; Jamal SS; Shah AA; Pitropakis N; Buchanan WJ
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework.
    Fadel MM; El-Ghamrawy SM; Ali-Eldin AMT; Hassan MK; El-Desoky AI
    PLoS One; 2022; 17(7):e0271436. PubMed ID: 35905101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Internet of Things based approach toward diabetes prediction using deep learning models.
    Naseem A; Habib R; Naz T; Atif M; Arif M; Allaoua Chelloug S
    Front Public Health; 2022; 10():914106. PubMed ID: 36091536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.