These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36616826)

  • 1. Method for Predicting RUL of Rolling Bearings under Different Operating Conditions Based on Transfer Learning and Few Labeled Data.
    Sun W; Wang H; Liu Z; Qu R
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism.
    Wu H; Li J; Zhang Q; Tao J; Meng Z
    ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification.
    Di Maggio LG
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold.
    Li J; Wang Z; Liu X; Feng Z
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning.
    Wang Y; Li Y; Lu H; Wang D
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-condition and cross-platform remaining useful life estimation via adversarial-based domain adaptation.
    Zhao D; Liu F
    Sci Rep; 2022 Jan; 12(1):878. PubMed ID: 35042894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient.
    Li Q; Yan C; Chen G; Wang H; Li H; Wu L
    ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent fault identification for industrial automation system via multi-scale convolutional generative adversarial network with partially labeled samples.
    Pan T; Chen J; Xie J; Chang Y; Zhou Z
    ISA Trans; 2020 Jun; 101():379-389. PubMed ID: 31955949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data.
    Chao KC; Chou CB; Lee CH
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings.
    Peng C; Zhao Y; Li C; Tang Z; Gui W
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling Bearing Remaining Useful Life Prediction Based on CNN-VAE-MBiLSTM.
    Yang L; Jiang Y; Zeng K; Peng T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network.
    Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN.
    Gao S; Xu L; Zhang Y; Pei Z
    ISA Trans; 2022 Sep; 128(Pt B):485-502. PubMed ID: 35177261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Representation Domain Adaptation Network with Duplex Adversarial Learning for Hot-Rolling Mill Fault Diagnosis.
    Peng R; Zhang X; Shi P
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.