These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 36616884)

  • 1. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate.
    Panayanthatta N; Clementi G; Ouhabaz M; Margueron S; Bartasyte A; Lallart M; Basrour S; La Rosa R; Bano E; Montes L
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling.
    Shi R; Chen J; Ma T; Li C; Zhang W; Ye D
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester.
    Ganapathy SR; Salleh H; Azhar MKA
    Sci Rep; 2021 Feb; 11(1):4458. PubMed ID: 33627722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs.
    Elgamal MA; Elgamal H; Kouritem SA
    Sci Rep; 2024 May; 14(1):11401. PubMed ID: 38762520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting.
    Chen L; Li C; Fang J
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38088781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Numerical Study on Piezoelectric Energy Harvester for Self-Powered Pacemaker Application.
    Kumar A; Kiran R; Kumar S; Chauhan VS; Kumar R; Vaish R
    Glob Chall; 2018 Jan; 2(1):1700084. PubMed ID: 31565302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer.
    Islam M; Ali U; Mone S
    PLoS One; 2024; 19(6):e0304489. PubMed ID: 38857262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated and measured piezoelectric energy harvesting of dynamic load in tires.
    Staaf H; Matsson S; Sepheri S; Köhler E; Daoud K; Ahrentorp F; Jonasson C; Folkow P; Ryynänen L; Penttila M; Rusu C
    Heliyon; 2024 Apr; 10(7):e29043. PubMed ID: 38601550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-Zero Stiffness Vibration Sensing and Energy Harvesting Integration Based on Buckled Piezoelectric Euler Beam.
    Tuo J; Xu X; Li J; Dai T; Liu Z
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Electrical Generation Efficiency through Parametrical Excitation and Slapping Force in Nonlinear Elastic Beams for Vibration Energy Harvesting.
    Wang YR; Kuo CH
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in wearable piezoelectric energy harvesters.
    Sun L; He L; Yu G; Zheng X; Wang H; Yu D; Lin J
    Rev Sci Instrum; 2024 Apr; 95(4):. PubMed ID: 38607263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Characterisation of a Low-Frequency-Vibration Energy Harvester.
    Plaza A; Iriarte X; Castellano-Aldave C; Carlosena A
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters.
    Tien MH; D'Souza K
    Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190491. PubMed ID: 32082056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data relating to mems piezoelectric micro power harvester physical parameter optimization, for extremely low frequency and low vibration level applications.
    Alrashdan MHS
    Data Brief; 2020 Dec; 33():106571. PubMed ID: 33299913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of seaweed-inspired piezoelectric plates for energy harvesting from oscillatory cross flow.
    Zhu Q; Xiao Q
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38663427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray-coated electret materials with enhanced stability in a harsh environment for an MEMS energy harvesting device.
    Luo A; Xu Y; Zhang Y; Zhang M; Zhang X; Lu Y; Wang F
    Microsyst Nanoeng; 2021; 7():15. PubMed ID: 34567730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent consumption minimization strategy based on global optimization of equivalent factor for hybrid tractor.
    Zhu Z; Zhang Y; Zhang H; Wang D; Chen L
    Sci Rep; 2024 Jun; 14(1):12911. PubMed ID: 38839857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Piezoelectric Energy Harvester for Earcanal Dynamic Motion Exploitation Using a Bistable Resonator Cycled by Coupled Hydraulic Valves Made of Collapsed Flexible Tubes.
    Avetissian T; Formosa F; Badel A; Delnavaz A; Voix J
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.