These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36616992)

  • 61. 3D-printed Point-of-Care Platform for Genetic Testing of Infectious Diseases Directly in Human Samples Using Acoustic Sensors and a Smartphone.
    Papadakis G; Pantazis AK; Ntogka M; Parasyris K; Theodosi GI; Kaprou G; Gizeli E
    ACS Sens; 2019 May; 4(5):1329-1336. PubMed ID: 30964650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel.
    Jang I; Carrão DB; Menger RF; Moraes de Oliveira AR; Henry CS
    ACS Sens; 2020 Jul; 5(7):2230-2238. PubMed ID: 32583663
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides.
    Zhao Y; Yang M; Fu Q; Ouyang H; Wen W; Song Y; Zhu C; Lin Y; Du D
    Anal Chem; 2018 Jun; 90(12):7391-7398. PubMed ID: 29792679
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Power-free microfluidic biosensing of Salmonella with slide multivalve and disposable syringe.
    Guo R; Xue L; Jin N; Duan H; Li M; Lin J
    Biosens Bioelectron; 2022 Oct; 213():114458. PubMed ID: 35714495
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea.
    Cho S; Park TS; Nahapetian TG; Yoon JY
    Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157:H7 in milk.
    Yang T; Wang Z; Song Y; Yang X; Chen S; Fu S; Qin X; Zhang W; Man C; Jiang Y
    J Dairy Sci; 2021 Aug; 104(8):8506-8516. PubMed ID: 34053767
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Smartphone-based analytical biosensors.
    Huang X; Xu D; Chen J; Liu J; Li Y; Song J; Ma X; Guo J
    Analyst; 2018 Nov; 143(22):5339-5351. PubMed ID: 30327808
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg
    Monisha ; Shrivas K; Kant T; Patel S; Devi R; Dahariya NS; Pervez S; Deb MK; Rai MK; Rai J
    J Hazard Mater; 2021 Jul; 414():125440. PubMed ID: 33684821
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A smartphone-integrated paper sensing system for fluorescent and colorimetric dual-channel detection of foodborne pathogenic bacteria.
    Wang C; Gao X; Wang S; Liu Y
    Anal Bioanal Chem; 2020 Jan; 412(3):611-620. PubMed ID: 31900539
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics.
    Hassan SU; Zhang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prediction of anemia and estimation of hemoglobin concentration using a smartphone camera.
    Suner S; Rayner J; Ozturan IU; Hogan G; Meehan CP; Chambers AB; Baird J; Jay GD
    PLoS One; 2021; 16(7):e0253495. PubMed ID: 34260592
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat.
    Koh A; Kang D; Xue Y; Lee S; Pielak RM; Kim J; Hwang T; Min S; Banks A; Bastien P; Manco MC; Wang L; Ammann KR; Jang KI; Won P; Han S; Ghaffari R; Paik U; Slepian MJ; Balooch G; Huang Y; Rogers JA
    Sci Transl Med; 2016 Nov; 8(366):366ra165. PubMed ID: 27881826
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor.
    Zhang J; Khan I; Zhang Q; Liu X; Dostalek J; Liedberg B; Wang Y
    Biosens Bioelectron; 2018 Jan; 99():312-317. PubMed ID: 28787676
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A smartphone-based system for fluorescence polarization assays.
    Zhao Z; Wei L; Cao M; Lu M
    Biosens Bioelectron; 2019 Mar; 128():91-96. PubMed ID: 30640125
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Smartphone-based portable wireless optical system for the detection of target analytes.
    Gautam S; Batule BS; Kim HY; Park KS; Park HG
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27906513
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.
    Nelis JLD; Bura L; Zhao Y; Burkin KM; Rafferty K; Elliott CT; Campbell K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766483
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione.
    Yuan K; Cuntín-Abal C; Jurado-Sánchez B; Escarpa A
    Anal Chem; 2021 Dec; 93(49):16385-16392. PubMed ID: 34806352
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Portable Smartphone-based Platform with an Offline Image-processing Tool for the Rapid Paper-based Colorimetric Detection of Glucose in Artificial Saliva.
    Gölcez T; Kiliç V; Sen M
    Anal Sci; 2021 Apr; 37(4):561-567. PubMed ID: 33012755
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sunlight based handheld smartphone spectrometer.
    Jian D; Wang B; Huang H; Meng X; Liu C; Xue L; Liu F; Wang S
    Biosens Bioelectron; 2019 Oct; 143():111632. PubMed ID: 31479987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.