BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36617005)

  • 1. Automated Bowel Sound and Motility Analysis with CNN Using a Smartphone.
    Kutsumi Y; Kanegawa N; Zeida M; Matsubara H; Murayama N
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Bowel Sound Monitoring and Segmentation by Wearable Devices and Convolutional Neural Networks.
    Zhao K; Jiang H; Wang Z; Chen P; Zhu B; Duan X
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):985-996. PubMed ID: 32833642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Sleep Stages Via Deep Learning Using Smartphone Audio Recordings in Home Environments: Model Development and Validation.
    Tran HH; Hong JK; Jang H; Jung J; Kim J; Hong J; Lee M; Kim JW; Kushida CA; Lee D; Kim D; Yoon IY
    J Med Internet Res; 2023 Jun; 25():e46216. PubMed ID: 37261889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARMA-based spectral bandwidth for evaluation of bowel motility by the analysis of bowel sounds.
    Emoto T; Shono K; Abeyratne UR; Okahisa T; Yano H; Akutagawa M; Konaka S; Kinouchi Y
    Physiol Meas; 2013 Aug; 34(8):925-36. PubMed ID: 23893043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone.
    Nan Y; Lovell NH; Redmond SJ; Wang K; Delbaere K; van Schooten KS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33334028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science.
    Banchero L; Lopez JJ; Pueo B; Jimenez-Olmedo JM
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Accuracy of Smartphone Sound Level Meter Applications (SLMAs) in Measuring Sound Levels in Clinical Rooms.
    Serpanos YC; Schoepflin JR; Cox SR; Davis D
    J Am Acad Audiol; 2021 Jan; 32(1):27-34. PubMed ID: 33469901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices.
    Alkahtani H; Aldhyani THH
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Sound Collection Using Smartphones and Machine Learning to Measure Cough.
    Kvapilova L; Boza V; Dubec P; Majernik M; Bogar J; Jamison J; Goldsack JC; Kimmel DJ; Karlin DR
    Digit Biomark; 2019; 3(3):166-175. PubMed ID: 32095775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Bowel Sound Analysis: An Overview.
    Nowak JK; Nowak R; Radzikowski K; Grulkowski I; Walkowiak J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-Based System for Learning and Inferring Hearing Aid Settings.
    Aldaz G; Puria S; Leifer LJ
    J Am Acad Audiol; 2016 Oct; 27(9):732-749. PubMed ID: 27718350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks.
    Ficek J; Radzikowski K; Nowak JK; Yoshie O; Walkowiak J; Nowak R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study.
    Chen YC; Chu YC; Huang CY; Lee YT; Lee WY; Hsu CY; Yang AC; Liao WH; Cheng YF
    EClinicalMedicine; 2022 Sep; 51():101543. PubMed ID: 35856040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive Detection of Bowel Sounds in Real-life Settings Using Spectrogram Zeros and Autoencoding.
    Bilionis I; Apostolidis G; Charisis V; Liatsos C; Hadjileontiadis L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():915-919. PubMed ID: 34891439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a bowel sound detector adapted to demonstrate the effect of food intake.
    Wang N; Testa A; Marshall BJ
    Biomed Eng Online; 2022 Jan; 21(1):1. PubMed ID: 34983542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.
    Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Eye-Tracking on a Smartphone with CNN Feature Extraction and an Infrared 3D Model.
    Brousseau B; Rose J; Eizenman M
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.