These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36617006)

  • 1. Biosensing of Haemorheological Properties Using Microblood Flow Manipulation and Quantification.
    Kang YJ
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models.
    Kang YJ; Lee SJ
    Analyst; 2018 Jun; 143(12):2723-2749. PubMed ID: 29740642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood rheometer based on microflow manipulation of continuous blood flows using push-and-back mechanism.
    Kang YJ
    Anal Methods; 2021 Oct; 13(41):4871-4883. PubMed ID: 34586112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample.
    Kim G; Jeong S; Kang YJ
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Air Compliance Effect on Measurement of Mechanical Properties of Blood Sample Flowing in Microfluidic Channels.
    Kang YJ
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous and simultaneous measurement of the biophysical properties of blood in a microfluidic environment.
    Kang YJ
    Analyst; 2016 Nov; 141(24):6583-6597. PubMed ID: 27858002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intralipid infusion on blood viscosity and other haemorheological parameters in neonates and children.
    Kessler U; Poeschl J; Raz D; Linderkamp O; Bauer J
    Acta Paediatr; 2004 Aug; 93(8):1058-62. PubMed ID: 15456196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data.
    Windberger U; Bartholovitsch A; Plasenzotti R; Korak KJ; Heinze G
    Exp Physiol; 2003 May; 88(3):431-40. PubMed ID: 12719768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Viscoelasticity Measurement Using Interface Variations in Coflowing Streams under Pulsatile Blood Flows.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow.
    Kaliviotis E; Dusting J; Sherwood JM; Balabani S
    Clin Hemorheol Microcirc; 2015 Sep; 63(2):123-48. PubMed ID: 26444611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on-off blood flows supplied from a disposable air-compressed pump.
    Kang YJ
    Analyst; 2019 Jun; 144(11):3556-3566. PubMed ID: 31050348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk factors evaluation in some cardiovascular diseases.
    Puniyani RR; Ajmani R; Kale PA
    J Biomed Eng; 1991 Sep; 13(5):441-3. PubMed ID: 1795515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hormone replacement therapy upon haemorheological variables.
    Spengler MI; Goñi GM; Mengarelli G; Bravo Luna M; Bocanera R; Tozzini R; Rasia ML
    Clin Hemorheol Microcirc; 2003; 28(1):13-9. PubMed ID: 12632008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Assessment of Red Blood Cells in Pulsatile Blood Flows.
    Kang YJ
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The flow properties of blood and their characterization by hemorheologic methods].
    Lerche D; Bäumler H; Kucera W; Meier W; Paulitschke M
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1989; 116(5):631-52. PubMed ID: 2481610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of Red Blood Cell Sedimentation in a Driving Syringe to Blood Flow in Capillary Channels.
    Kang YJ
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.