BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 3661711)

  • 41. Protection by gabexate mesilate (FOY) of the exocrine pancreas in rats with acute pancreatitis induced by a supramaximal dose of caerulein.
    Hirano T; Manabe T; Tobe T
    J Gastroenterol Hepatol; 1991; 6(3):260-4. PubMed ID: 1717033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of kinesin, dynein and microtubules in pancreatic secretion.
    Schnekenburger J; Weber IA; Hahn D; Buchwalow I; Krüger B; Albrecht E; Domschke W; Lerch MM
    Cell Mol Life Sci; 2009 Aug; 66(15):2525-37. PubMed ID: 19488676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Condensing vacuole conversion and zymogen granule discharge in pancreatic exocrine cells: metabolic studies.
    Jamieson JD; Palade GE
    J Cell Biol; 1971 Mar; 48(3):503-22. PubMed ID: 5547590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Codistribution of TAP and the granule membrane protein GRAMP-92 in rat caerulein-induced pancreatitis.
    Otani T; Chepilko SM; Grendell JH; Gorelick FS
    Am J Physiol; 1998 Nov; 275(5):G999-G1009. PubMed ID: 9815030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide.
    Ding SP; Li JC; Jin C
    World J Gastroenterol; 2003 Mar; 9(3):584-9. PubMed ID: 12632523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pancreatic duct obstruction in rabbits causes digestive zymogen and lysosomal enzyme colocalization.
    Saluja A; Saluja M; Villa A; Leli U; Rutledge P; Meldolesi J; Steer M
    J Clin Invest; 1989 Oct; 84(4):1260-6. PubMed ID: 2477393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distribution of a synthetic protease inhibitor in rat pancreatic acini after supramaximal secretagogue stimulation.
    Otani T; Atomi Y; Kuroda A; Muto T; Tamura M; Fukuda S; Akao S; Gorelick FS
    Pancreas; 1997 Mar; 14(2):142-9. PubMed ID: 9057186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of acute pancreatitis. Cellular and subcellular events.
    Willemer S; Adler G
    Int J Pancreatol; 1991; 9():21-30. PubMed ID: 1744443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of hormonal stimulation by caerulein on acute experimental pancreatitis in the rat.
    Evander A; Ihse I; Lundquist I
    Eur Surg Res; 1981; 13(4):257-68. PubMed ID: 6169530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initiation of acute pancreatitis in mice is independent of fusion between lysosomes and zymogen granules.
    Zierke L; John D; Gischke M; Tran QT; Sendler M; Weiss FU; Bornscheuer UT; Ritter C; Lerch MM; Aghdassi AA
    Cell Mol Life Sci; 2024 May; 81(1):207. PubMed ID: 38709385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex.
    Jamieson JD; Palade GE
    J Cell Biol; 1967 Aug; 34(2):577-96. PubMed ID: 6035647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevention by prostaglandins of caerulein-induced pancreatitis in rats.
    Robert A; Lum JT; Lancaster C; Olafsson AS; Kolbasa KP; Nezamis JE
    Lab Invest; 1989 May; 60(5):677-91. PubMed ID: 2469859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Missorting of cathepsin B into the secretory compartment of CI-MPR/IGFII-deficient mice does not induce spontaneous trypsinogen activation but leads to enhanced trypsin activity during experimental pancreatitis--without affecting disease severity.
    Meister T; Niehues R; Hahn D; Domschke W; Sendler M; Lerch MM; Schnekenburger J
    J Physiol Pharmacol; 2010 Oct; 61(5):565-75. PubMed ID: 21081800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pancreatic lysosomal enzyme secretion via gut-hormone-regulated pathway in rats.
    Hirano T; Manabe T; Kyogoku T; Ando K; Tobe T
    Nihon Geka Hokan; 1991 Nov; 60(6):415-23. PubMed ID: 1726454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The origin of the zymogen granule membrane of the pancreatic acinar cell as examined by ultrastructural cytochemistry of acid phosphatase, thiamine pyrophosphatase, and ATP-diphosphohydrolase activities.
    Beaudoin AR; Grondin G; Lord A; Roberge M; St-Jean P
    Eur J Cell Biol; 1983 Jan; 29(2):218-25. PubMed ID: 6131821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subcellular kinetics of early trypsinogen activation in acute rodent pancreatitis.
    Mithöfer K; Fernández-del Castillo C; Rattner D; Warshaw AL
    Am J Physiol; 1998 Jan; 274(1):G71-9. PubMed ID: 9458775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in both the membrane and the enzyme content of individual zymogen granules are associated with sodium taurocholate-induced pancreatitis in rats.
    Manso MA; Orfao A; Tabernero MD; Vicente S; de Dios I
    Clin Sci (Lond); 1998 Mar; 94(3):293-301. PubMed ID: 9616264
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localization of cAMP-dependent protein kinase subunits along the secretory pathway in pancreatic and parotid acinar cells and accumulation of the catalytic subunit in parotid secretory granules following beta-adrenergic stimulation.
    Joachim S; Schwoch G
    Eur J Cell Biol; 1990 Feb; 51(1):76-84. PubMed ID: 2328739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The recovery of acute pancreatitis depends on the enzyme amount stored in zymogen granules at early stages.
    Manso MA; García-Montero AC; Tabernero MD; Orfao A; De Dios I
    Mol Cell Biochem; 1999 Oct; 200(1-2):35-41. PubMed ID: 10569181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hormone-induced pancreatitis.
    Willemer S; Elsässer HP; Adler G
    Eur Surg Res; 1992; 24 Suppl 1():29-39. PubMed ID: 1601022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.