BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36617154)

  • 1. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network.
    Khant M; Gouwanda D; Gopalai AA; Lim KH; Foong CC
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units.
    Mundt M; Johnson WR; Potthast W; Markert B; Mian A; Alderson J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait.
    Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Inertial Sensor-Based Neural Networks to Estimate COM-COP Inclination Angle During Walking.
    Choi A; Jung H; Mun JH
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait.
    Lee YJ; Wei MY; Chen YJ
    Gait Posture; 2022 Jul; 96():330-337. PubMed ID: 35785657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living.
    Hossain MSB; Dranetz J; Choi H; Guo Z
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3906-3917. PubMed ID: 35385394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From deep learning to transfer learning for the prediction of skeletal muscle forces.
    Dao TT
    Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.