These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36617154)

  • 1. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network.
    Khant M; Gouwanda D; Gopalai AA; Lim KH; Foong CC
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units.
    Mundt M; Johnson WR; Potthast W; Markert B; Mian A; Alderson J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait.
    Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Inertial Sensor-Based Neural Networks to Estimate COM-COP Inclination Angle During Walking.
    Choi A; Jung H; Mun JH
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait.
    Lee YJ; Wei MY; Chen YJ
    Gait Posture; 2022 Jul; 96():330-337. PubMed ID: 35785657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living.
    Hossain MSB; Dranetz J; Choi H; Guo Z
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3906-3917. PubMed ID: 35385394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From deep learning to transfer learning for the prediction of skeletal muscle forces.
    Dao TT
    Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.