These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 36617225)
1. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. Wang H; Lu Z; Xu Y; Zhang J; Han L; Chai M; Wang ZY; Yang X; Lu S; Tong J; Xiao L; Wen J; Mysore KS; Zhou C Plant Physiol; 2023 Mar; 191(3):1751-1770. PubMed ID: 36617225 [TBL] [Abstract][Full Text] [Related]
2. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Yang T; Li Y; Liu Y; He L; Liu A; Wen J; Mysore KS; Tadege M; Chen J Plant Mol Biol; 2021 Jan; 105(1-2):193-204. PubMed ID: 33037987 [TBL] [Abstract][Full Text] [Related]
3. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. Zhou C; Han L; Hou C; Metelli A; Qi L; Tadege M; Mysore KS; Wang ZY Plant Cell; 2011 Jun; 23(6):2106-24. PubMed ID: 21693694 [TBL] [Abstract][Full Text] [Related]
4. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Tadege M; Lin H; Bedair M; Berbel A; Wen J; Rojas CM; Niu L; Tang Y; Sumner L; Ratet P; McHale NA; Madueño F; Mysore KS Plant Cell; 2011 Jun; 23(6):2125-42. PubMed ID: 21719692 [TBL] [Abstract][Full Text] [Related]
5. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula. Peng J; Chen R Plant Signal Behav; 2011 Oct; 6(10):1537-44. PubMed ID: 21900740 [TBL] [Abstract][Full Text] [Related]
6. The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Zhou C; Han L; Fu C; Wen J; Cheng X; Nakashima J; Ma J; Tang Y; Tan Y; Tadege M; Mysore KS; Xia G; Wang ZY Plant Cell; 2013 Dec; 25(12):4845-62. PubMed ID: 24368797 [TBL] [Abstract][Full Text] [Related]
7. Potential but limited redundant roles of MtPIN4, MtPIN5 and MtPIN10/SLM1 in the development of Medicago truncatula. Zhou C; Han L; Wang ZY Plant Signal Behav; 2011 Nov; 6(11):1834-6. PubMed ID: 22057323 [TBL] [Abstract][Full Text] [Related]
8. NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. Cheng X; Peng J; Ma J; Tang Y; Chen R; Mysore KS; Wen J New Phytol; 2012 Jul; 195(1):71-84. PubMed ID: 22530598 [TBL] [Abstract][Full Text] [Related]
9. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. Niu L; Lin H; Zhang F; Watira TW; Li G; Tang Y; Wen J; Ratet P; Mysore KS; Tadege M Plant J; 2015 Feb; 81(3):480-92. PubMed ID: 25492397 [TBL] [Abstract][Full Text] [Related]
10. Zhang J; Zhao Y; Liu R; Zhou C Plant Signal Behav; 2019; 14(7):1612683. PubMed ID: 31042117 [TBL] [Abstract][Full Text] [Related]
11. LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene SMOOTH LEAF MARGIN1. Wang X; Zhang J; Xie Y; Liu X; Wen L; Wang H; Zhang J; Li J; Han L; Yu X; Mysore KS; Wen J; Zhou C Plant Physiol; 2021 Sep; 187(1):218-235. PubMed ID: 34618141 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Zhang JY; Broeckling CD; Blancaflor EB; Sledge MK; Sumner LW; Wang ZY Plant J; 2005 Jun; 42(5):689-707. PubMed ID: 15918883 [TBL] [Abstract][Full Text] [Related]
13. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula. Zhao B; He L; Jiang C; Liu Y; He H; Bai Q; Zhou S; Zheng X; Wen J; Mysore KS; Tadege M; Liu Y; Liu R; Chen J New Phytol; 2020 Jul; 227(2):613-628. PubMed ID: 32170762 [TBL] [Abstract][Full Text] [Related]
14. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Benlloch R; d'Erfurth I; Ferrandiz C; Cosson V; Beltrán JP; Cañas LA; Kondorosi A; Madueño F; Ratet P Plant Physiol; 2006 Nov; 142(3):972-83. PubMed ID: 16963524 [TBL] [Abstract][Full Text] [Related]
15. Regulation of compound leaf development by PHANTASTICA in Medicago truncatula. Ge L; Peng J; Berbel A; Madueño F; Chen R Plant Physiol; 2014 Jan; 164(1):216-28. PubMed ID: 24218492 [TBL] [Abstract][Full Text] [Related]
16. HEADLESS, a WUSCHEL homolog, uncovers novel aspects of shoot meristem regulation and leaf blade development in Medicago truncatula. Meng Y; Liu H; Wang H; Liu Y; Zhu B; Wang Z; Hou Y; Zhang P; Wen J; Yang H; Mysore KS; Chen J; Tadege M; Niu L; Lin H J Exp Bot; 2019 Jan; 70(1):149-163. PubMed ID: 30272208 [TBL] [Abstract][Full Text] [Related]
17. Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula. Zhou C; Han L; Zhao Y; Wang H; Nakashima J; Tong J; Xiao L; Wang ZY Plant J; 2019 Nov; 100(3):562-571. PubMed ID: 31350797 [TBL] [Abstract][Full Text] [Related]
18. Wax Crystal-Sparse Leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Gan L; Zhu S; Zhao Z; Liu L; Wang X; Zhang Z; Zhang X; Wang J; Wang J; Guo X; Wan J Plant Cell Rep; 2017 Oct; 36(10):1655-1666. PubMed ID: 28733852 [TBL] [Abstract][Full Text] [Related]
19. Wang H; Xu Y; Hong L; Zhang X; Wang X; Zhang J; Ding Z; Meng Z; Wang ZY; Long R; Yang Q; Kong F; Han L; Zhou C Front Plant Sci; 2019; 10():1024. PubMed ID: 31475021 [TBL] [Abstract][Full Text] [Related]
20. A β-Ketoacyl-CoA Synthase Is Involved in Rice Leaf Cuticular Wax Synthesis and Requires a CER2-LIKE Protein as a Cofactor. Wang X; Guan Y; Zhang D; Dong X; Tian L; Qu LQ Plant Physiol; 2017 Feb; 173(2):944-955. PubMed ID: 27913740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]