These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3661732)

  • 1. Limited capacity for renal vasodilatation in anesthetized diabetic rats.
    Ha H; Dunham EW
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H845-55. PubMed ID: 3661732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat renal hemodynamics during venous compression: roles of nerves and prostaglandins.
    Corradi A; Arendshorst WJ
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F810-20. PubMed ID: 4003555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal hemodynamics in response to a kinin analogue antagonist.
    Beierwaltes WH; Carretero OA; Scicli AG
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F408-14. PubMed ID: 3414801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol feeding does not alter renal hemodynamic response to acetylcholine and angiotensin II in rabbits.
    Carroll JF; Mizelle HL; Cockrell K; Reckelhoff JF; Clower BR; Granger JP
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R940-7. PubMed ID: 9087658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced renal vascular responsiveness to angiotensin II in hypertensive ren-2 transgenic rats.
    Jacinto SM; Mullins JJ; Mitchell KD
    Am J Physiol; 1999 Feb; 276(2):F315-22. PubMed ID: 9950963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses.
    Oliver JA; Cannon PJ
    J Clin Invest; 1978 Mar; 61(3):610-23. PubMed ID: 641142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of bradykinin and icatibant on renal hemodynamics in conscious spontaneously hypertensive and normotensive rats.
    Braun C; Ade M; Unger T; van der Woude FJ; Rohmeiss P
    J Cardiovasc Pharmacol; 1997 Oct; 30(4):446-54. PubMed ID: 9335403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats.
    Vyas SJ; Blaschak CM; Chinoy MR; Jackson EK
    Mol Cell Biochem; 2000 Sep; 212(1-2):121-9. PubMed ID: 11108143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased endothelium dependent relaxation (nitric oxide) in diabetic kidneys.
    Costa e Forti A; Fonteles MC
    Horm Metab Res; 1998 Jan; 30(1):55-7. PubMed ID: 9503040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cyclosporine administration on renal hemodynamics in conscious rats.
    Murray BM; Paller MS; Ferris TF
    Kidney Int; 1985 Nov; 28(5):767-74. PubMed ID: 3910916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by bradykinin of renal adrenergic effects in anesthetized rats.
    Inokuchi K; Malik KU
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F387-94. PubMed ID: 6426309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of nitric oxide in the regulation of regional hemodynamics in streptozotocin-diabetic rats.
    Granstam E; Granstam SO
    Physiol Res; 2003; 52(2):159-69. PubMed ID: 12678658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal vascular resistance and reactivity in the spontaneously hypertensive rat.
    Fink GD; Brody MJ
    Am J Physiol; 1979 Aug; 237(2):F128-32. PubMed ID: 464097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective impairment of hindquarters vasodilator responses to bradykinin in conscious Wistar rats with streptozotocin-induced diabetes mellitus.
    Kiff RJ; Gardiner SM; Compton AM; Bennett T
    Br J Pharmacol; 1991 Jun; 103(2):1357-62. PubMed ID: 1909198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO-independent mechanism mediates tempol-induced renal vasodilation in SHR.
    de Richelieu LT; Sorensen CM; Holstein-Rathlou NH; Salomonsson M
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1227-34. PubMed ID: 16033921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of renal hemodynamic and structural alterations in rat models of renal impairment: role of renal sympathoexcitation.
    Salman IM; Ameer OZ; Sattar MA; Abdullah NA; Yam MF; Najim HS; Abdulkarim MF; Abdullah GZ; Kaur G; Khan MA; Johns EJ
    J Nephrol; 2011; 24(1):68-77. PubMed ID: 20437405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of p38 mitogen-activated protein kinase inhibition on blood pressure, renal hemodynamics, and renal vascular reactivity in normal and diabetic rats.
    Komers R; Schutzer W; Xue H; Oyama TT; Lindsley JN; Anderson S
    Transl Res; 2007 Dec; 150(6):343-9. PubMed ID: 18022596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased endothelium-dependent renal vasodilation in cirrhotic rats.
    García-Estañ J; Atucha NM; Sabio JM; Vargas F; Quesada T; Romero JC
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R549-53. PubMed ID: 8067467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in vascular reactivity in models of ischemic acute renal failure.
    Conger JD; Robinette JB; Hammond WS
    Kidney Int; 1991 Jun; 39(6):1087-97. PubMed ID: 1895663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction.
    Vallon V; Wead LM; Blantz RC
    J Am Soc Nephrol; 1995 Apr; 5(10):1761-7. PubMed ID: 7787143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.