These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 36617667)

  • 1. Rates and spectra of de novo structural mutations in
    López-Cortegano E; Craig RJ; Chebib J; Balogun EJ; Keightley PD
    Genome Res; 2023 Jan; 33(1):45-60. PubMed ID: 36617667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas.
    López-Cortegano E; Craig RJ; Chebib J; Samuels T; Morgan AD; Kraemer SA; Böndel KB; Ness RW; Colegrave N; Keightley PD
    Mol Biol Evol; 2021 Aug; 38(9):3709-3723. PubMed ID: 33950243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt stress alters the spectrum of de novo mutation available to selection during experimental adaptation of Chlamydomonas reinhardtii.
    Hasan AR; Lachapelle J; El-Shawa SA; Potjewyd R; Ford SA; Ness RW
    Evolution; 2022 Oct; 76(10):2450-2463. PubMed ID: 36036481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis.
    Payne ZL; Penny GM; Turner TN; Dutcher SK
    Plant Commun; 2023 Mar; 4(2):100493. PubMed ID: 36397679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Vasanthakrishnan RB; Colegrave N; Keightley PD
    Genome Res; 2015 Nov; 25(11):1739-49. PubMed ID: 26260971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii.
    Ness RW; Morgan AD; Colegrave N; Keightley PD
    Genetics; 2012 Dec; 192(4):1447-54. PubMed ID: 23051642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii.
    Kraemer SA; Böndel KB; Ness RW; Keightley PD; Colegrave N
    Evolution; 2017 Dec; 71(12):2918-2929. PubMed ID: 28884790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii.
    Flowers JM; Hazzouri KM; Pham GM; Rosas U; Bahmani T; Khraiwesh B; Nelson DR; Jijakli K; Abdrabu R; Harris EH; Lefebvre PA; Hom EF; Salehi-Ashtiani K; Purugganan MD
    Plant Cell; 2015 Sep; 27(9):2353-69. PubMed ID: 26392080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii.
    Balogun EJ; Ness RW
    Mol Biol Evol; 2024 Mar; 41(3):. PubMed ID: 38366781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii.
    Flynn JM; Lower SE; Barbash DA; Clark AG
    Genome Biol Evol; 2018 Jul; 10(7):1673-1686. PubMed ID: 29931069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.
    Morgan AD; Ness RW; Keightley PD; Colegrave N
    Evolution; 2014 Sep; 68(9):2589-602. PubMed ID: 24826801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in
    Weng ML; Becker C; Hildebrandt J; Neumann M; Rutter MT; Shaw RG; Weigel D; Fenster CB
    Genetics; 2019 Feb; 211(2):703-714. PubMed ID: 30514707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome.
    Ness RW; Kraemer SA; Colegrave N; Keightley PD
    Mol Biol Evol; 2016 Mar; 33(3):800-8. PubMed ID: 26615203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations.
    Wyant SR; Rodriguez MF; Carter CK; Parrott WA; Jackson SA; Stupar RM; Morrell PL
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 35100358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.
    Lin H; Miller ML; Granas DM; Dutcher SK
    PLoS Genet; 2013; 9(9):e1003841. PubMed ID: 24086163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution patterns and impact of transposable elements in genes of green algae.
    Philippsen GS; Avaca-Crusca JS; Araujo APU; DeMarco R
    Gene; 2016 Dec; 594(1):151-159. PubMed ID: 27614292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAPINS, a Highly Efficient Detection Method That Identifies Insertional Mutations and Complex DNA Rearrangements.
    Lin H; Cliften PF; Dutcher SK
    Plant Physiol; 2018 Dec; 178(4):1436-1447. PubMed ID: 30206105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational Landscape of Spontaneous Base Substitutions and Small Indels in Experimental
    Konrad A; Brady MJ; Bergthorsson U; Katju V
    Genetics; 2019 Jul; 212(3):837-854. PubMed ID: 31110155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii.
    Chaux-Jukic F; O'Donnell S; Craig RJ; Eberhard S; Vallon O; Xu Z
    Nucleic Acids Res; 2021 Jul; 49(13):7571-7587. PubMed ID: 34165564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.