These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36617724)

  • 1. Enhancing Electrocatalytic Hydrodechlorination through Interfacial Microenvironment Modulation.
    Fan Z; Zhao H; Wang K; Ran W; Sun JF; Liu J; Liu R
    Environ Sci Technol; 2023 Jan; ():. PubMed ID: 36617724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Air Cathode Design for Enhanced Interfacial Electrocatalytic Reactions in High-Performance Zinc-Air Batteries.
    Yu J; Li BQ; Zhao CX; Liu JN; Zhang Q
    Adv Mater; 2020 Mar; 32(12):e1908488. PubMed ID: 32072701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO
    Deng T; Jia S; Chen C; Jiao J; Chen X; Xue C; Xia W; Xing X; Zhu Q; Wu H; He M; Han B
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202313796. PubMed ID: 38015565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the efficient state of Pd catalyst for robust electrocatalytic hydrodechlorination.
    Xu S; Mei B; Li F; Mao J; Huang C; Yan Y; Chen N; Xu Y; Shi M
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37506682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling.
    Jiang H; Sun Y; You B
    Acc Chem Res; 2023 Jun; 56(12):1421-1432. PubMed ID: 37229761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Mass Transfer of Ozone and Emerging Pollutants through a Gas-Solid-Liquid Reaction Interface for Efficient Water Decontamination.
    Wang Z; Li K; Guo J; Liu H; Zhang Y; Dang P; Wang J
    Environ Sci Technol; 2023 Nov; 57(47):18647-18657. PubMed ID: 36722492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Surface Hydrophilicity on Electrochemical Water Splitting.
    Kim BK; Kim MJ; Kim JJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11940-11947. PubMed ID: 33650852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction.
    Huang L; Zheng X; Gao G; Zhang H; Rong K; Chen J; Liu Y; Zhu X; Wu W; Wang Y; Wang J; Dong S
    J Am Chem Soc; 2021 May; 143(18):6933-6941. PubMed ID: 33915042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction.
    Qiao M; Titirici MM
    Chemistry; 2018 Dec; 24(69):18374-18384. PubMed ID: 30307068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts.
    Qian Y; Yu J; Zhang Y; Zhang F; Kang Y; Su C; Shi H; Kang DJ; Pang H
    Small Methods; 2022 Jan; 6(1):e2101186. PubMed ID: 35041283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Hydrosaturation Selectivity and Electron Transfer for Electrocatalytic Chlorophenols Hydrogenation on Ru Sites.
    Gu Z; Ni N; He G; Shan Y; Wu K; Hu C; Qu J
    Environ Sci Technol; 2023 Oct; 57(43):16695-16706. PubMed ID: 37844151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment.
    Hu L; Shi L; Shen F; Tong Q; Lv X; Li Y; Liu Z; Ao L; Zhang X; Jiang G; Hou L
    Water Res; 2022 Oct; 225():119210. PubMed ID: 36215844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction.
    Jiang K; Shi X; Chen M; Lv X; Gong H; Shen Y; Wang P; Dong F; Liu M; Zhang X; Jiang G
    J Hazard Mater; 2021 Jun; 411():125119. PubMed ID: 33485220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst.
    Chen YL; Xiong L; Song XN; Wang WK; Huang YX; Yu HQ
    Chemosphere; 2015 Apr; 125():57-63. PubMed ID: 25697805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Electron Regulation of Rh Atomic Layer-Decorated SnO
    Liu Y; Huang L; Fang Y; Zhu X; Nan J; Dong S
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12304-12313. PubMed ID: 35238539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.