These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36617767)

  • 1. BiRPN-YOLOvX: A weighted bidirectional recursive feature pyramid algorithm for lung nodule detection.
    Han L; Li F; Yu H; Xia K; Xin Q; Zou X
    J Xray Sci Technol; 2023; 31(2):301-317. PubMed ID: 36617767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.
    Setio AAA; Traverso A; de Bel T; Berens MSN; Bogaard CVD; Cerello P; Chen H; Dou Q; Fantacci ME; Geurts B; Gugten RV; Heng PA; Jansen B; de Kaste MMJ; Kotov V; Lin JY; Manders JTMC; Sóñora-Mengana A; García-Naranjo JC; Papavasileiou E; Prokop M; Saletta M; Schaefer-Prokop CM; Scholten ET; Scholten L; Snoeren MM; Torres EL; Vandemeulebroucke J; Walasek N; Zuidhof GCA; Ginneken BV; Jacobs C
    Med Image Anal; 2017 Dec; 42():1-13. PubMed ID: 28732268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: a secondary analysis of lung nodule datasets.
    Lin CY; Guo SM; Lien JJ; Tsai TY; Liu YS; Lai CH; Hsu IL; Chang CC; Tseng YL
    Cancer Imaging; 2024 Mar; 24(1):40. PubMed ID: 38509635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.
    Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X
    Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust explanation supervision for false positive reduction in pulmonary nodule detection.
    Zhao Q; Chang CW; Yang X; Zhao L
    Med Phys; 2024 Mar; 51(3):1687-1701. PubMed ID: 38224306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative.
    Wang W; Luo J; Yang X; Lin H
    Acad Radiol; 2015 Apr; 22(4):488-95. PubMed ID: 25601306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
    Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B
    Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image.
    Huang YS; Chou PR; Chen HM; Chang YC; Chang RF
    Comput Methods Programs Biomed; 2022 Jun; 220():106786. PubMed ID: 35398579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.
    Zheng S; Guo J; Cui X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA
    IEEE Trans Med Imaging; 2020 Mar; 39(3):797-805. PubMed ID: 31425026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [An automatic pulmonary nodules detection algorithm with multi-scale information fusion].
    Liu X; Qi S; Xiong P; Liu J; Wang H; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):434-441. PubMed ID: 32597085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention pyramid pooling network for artificial diagnosis on pulmonary nodules.
    Wang H; Zhu H; Ding L; Yang K
    PLoS One; 2024; 19(5):e0302641. PubMed ID: 38753596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative CT analysis of pulmonary nodules for lung adenocarcinoma risk classification based on an exponential weighted grey scale angular density distribution feature.
    Le V; Yang D; Zhu Y; Zheng B; Bai C; Shi H; Hu J; Zhai C; Lu S
    Comput Methods Programs Biomed; 2018 Jul; 160():141-151. PubMed ID: 29728241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Net: an S-shaped network for nodule detection in 3D CT images.
    Zhang J; Zou W; Hu N; Zhang B; Wang J
    Phys Med Biol; 2024 Apr; 69(7):. PubMed ID: 38382097
    [No Abstract]   [Full Text] [Related]  

  • 14. MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection.
    Guo Z; Zhao L; Yuan J; Yu H
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2547-2558. PubMed ID: 34847048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss.
    Tran GS; Nghiem TP; Nguyen VT; Luong CM; Burie JC
    J Healthc Eng; 2019; 2019():5156416. PubMed ID: 30863524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale self-calibrated pulmonary nodule detection network fusing dual attention mechanism.
    Zhu Y; Xu L; Liu Y; Guo P; Zhang J
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37451250
    [No Abstract]   [Full Text] [Related]  

  • 17. [A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism].
    Zhao Y; Peng Z; Ma J; Xia H; Wan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):320-328. PubMed ID: 35523553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved faster R-CNN algorithm for assisted detection of lung nodules.
    Xu J; Ren H; Cai S; Zhang X
    Comput Biol Med; 2023 Feb; 153():106470. PubMed ID: 36587571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets.
    Zhang W; Wang X; Li X; Chen J
    Comput Biol Med; 2018 Jan; 92():64-72. PubMed ID: 29154123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
    Mukhopadhyay S
    J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.