BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36617798)

  • 21. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework.
    Cho JH; Jeong JH; Lee SW
    IEEE Trans Cybern; 2022 Dec; 52(12):13279-13292. PubMed ID: 34748509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direction decoding of imagined hand movements using subject-specific features from parietal EEG.
    Sagila GK; Vinod AP
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35901779
    [No Abstract]   [Full Text] [Related]  

  • 23. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Multifrequency Brain Network-Based Deep Learning Framework for Motor Imagery Decoding.
    Xue J; Ren F; Sun X; Yin M; Wu J; Ma C; Gao Z
    Neural Plast; 2020; 2020():8863223. PubMed ID: 33505456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification.
    Zhang C; Kim YK; Eskandarian A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33691299
    [No Abstract]   [Full Text] [Related]  

  • 26. Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs.
    Luo J; Shi W; Lu N; Wang J; Chen H; Wang Y; Lu X; Wang X; Hei X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33540387
    [No Abstract]   [Full Text] [Related]  

  • 27. CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data.
    Miah MO; Muhammod R; Mamun KAA; Farid DM; Kumar S; Sharma A; Dehzangi A
    J Neurosci Methods; 2021 Dec; 364():109373. PubMed ID: 34606773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617
    [No Abstract]   [Full Text] [Related]  

  • 29. An in-depth survey on Deep Learning-based Motor Imagery Electroencephalogram (EEG) classification.
    Wang X; Liesaputra V; Liu Z; Wang Y; Huang Z
    Artif Intell Med; 2024 Jan; 147():102738. PubMed ID: 38184362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art.
    Arpaia P; Esposito A; Natalizio A; Parvis M
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35640554
    [No Abstract]   [Full Text] [Related]  

  • 31. Deep Learning of Motor Imagery EEG Classification for Brain-Computer Interface Illiterate Subject
    Zhang R; Wang Y; Li X; Liu B; Zhang L; Chen M; Hu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3087-3090. PubMed ID: 31946540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification.
    Liu X; Lv L; Shen Y; Xiong P; Yang J; Liu J
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33395676
    [No Abstract]   [Full Text] [Related]  

  • 33. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explainable cross-task adaptive transfer learning for motor imagery EEG classification.
    Miao M; Yang Z; Zeng H; Zhang W; Xu B; Hu W
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37963394
    [No Abstract]   [Full Text] [Related]  

  • 35. An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain-Computer Interface.
    Wang X; Yang R; Huang M
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces.
    Bhatt MW; Sharma S
    J Neurosci Methods; 2024 Aug; 408():110182. PubMed ID: 38795979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface.
    Moaveninejad S; D'Onofrio V; Tecchio F; Ferracuti F; Iarlori S; Monteriù A; Porcaro C
    Comput Methods Programs Biomed; 2024 Feb; 244():107944. PubMed ID: 38064955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.