These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36618010)

  • 1. The role of calcium and CaMKII in sleep.
    Wang Y; Minami Y; Ode KL; Ueda HR
    Front Syst Neurosci; 2022; 16():1059421. PubMed ID: 36618010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and role of brain calcium/calmodulin-dependent protein kinase II.
    Colbran RJ
    Neurochem Int; 1992 Dec; 21(4):469-97. PubMed ID: 1338943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca
    Onal B; Gratz D; Hund TJ
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1227-H1239. PubMed ID: 28842436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike frequency decoding and autonomous activation of Ca2+-calmodulin-dependent protein kinase II in dorsal root ganglion neurons.
    Eshete F; Fields RD
    J Neurosci; 2001 Sep; 21(17):6694-705. PubMed ID: 11517259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation Hypothesis of Sleep.
    Ode KL; Ueda HR
    Front Psychol; 2020; 11():575328. PubMed ID: 33123055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases.
    Li Y; Sirenko S; Riordon DR; Yang D; Spurgeon H; Lakatta EG; Vinogradova TM
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H532-44. PubMed ID: 27402669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation.
    Neef S; Dybkova N; Sossalla S; Ort KR; Fluschnik N; Neumann K; Seipelt R; Schöndube FA; Hasenfuss G; Maier LS
    Circ Res; 2010 Apr; 106(6):1134-44. PubMed ID: 20056922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca
    Tatsuki F; Ode KL; Ueda HR
    Neurosci Res; 2017 May; 118():48-55. PubMed ID: 28433628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons.
    Cai X; Gu Z; Zhong P; Ren Y; Yan Z
    J Biol Chem; 2002 Sep; 277(39):36553-62. PubMed ID: 12149253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain.
    Shioda N; Fukunaga K
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator.
    Ordyan M; Bartol T; Kennedy M; Rangamani P; Sejnowski T
    PLoS Comput Biol; 2020 Jul; 16(7):e1008015. PubMed ID: 32678848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes.
    Colinas O; Gallego M; Setién R; López-López JR; Pérez-García MT; Casis O
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1978-87. PubMed ID: 16648177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II.
    Raveendran R; Devi Suma Priya S; Mayadevi M; Steephan M; Santhoshkumar TR; Cheriyan J; Sanalkumar R; Pradeep KK; James J; Omkumar RV
    J Neurochem; 2009 Jul; 110(1):92-105. PubMed ID: 19453375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II.
    Sun XX; Hodge JJ; Zhou Y; Nguyen M; Griffith LC
    J Biol Chem; 2004 Mar; 279(11):10206-14. PubMed ID: 14699099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons.
    Tao-Cheng JH; Vinade L; Smith C; Winters CA; Ward R; Brightman MW; Reese TS; Dosemeci A
    Neuroscience; 2001; 106(1):69-78. PubMed ID: 11564417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaMKII inactivation by extracellular Ca(2+) depletion in dorsal root ganglion neurons.
    Cohen JE; Fields RD
    Cell Calcium; 2006 May; 39(5):445-54. PubMed ID: 16519936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium entry mediates hyperglycemia-induced apoptosis through Ca(2+)/calmodulin-dependent kinase II in retinal capillary endothelial cells.
    Li J; Wang P; Yu S; Zheng Z; Xu X
    Mol Vis; 2012; 18():2371-9. PubMed ID: 23049237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.