These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36618270)

  • 1. On the similarities of representations in artificial and brain neural networks for speech recognition.
    Wingfield C; Zhang C; Devereux B; Fonteneau E; Thwaites A; Liu X; Woodland P; Marslen-Wilson W; Su L
    Front Comput Neurosci; 2022; 16():1057439. PubMed ID: 36618270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human EEG and Recurrent Neural Networks Exhibit Common Temporal Dynamics During Speech Recognition.
    Hashemnia S; Grasse L; Soni S; Tata MS
    Front Syst Neurosci; 2021; 15():617605. PubMed ID: 34305540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of speech in convolutional layers and the brain stem based on language experience.
    Beguš G; Zhou A; Zhao TC
    Sci Rep; 2023 Apr; 13(1):6480. PubMed ID: 37081119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customized deep learning based Turkish automatic speech recognition system supported by language model.
    Görmez Y
    PeerJ Comput Sci; 2024; 10():e1981. PubMed ID: 38660198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
    Juang CF; Chiou CT; Lai CL
    IEEE Trans Neural Netw; 2007 May; 18(3):833-43. PubMed ID: 17526348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling naturalistic face processing in humans with deep convolutional neural networks.
    Jiahui G; Feilong M; Visconti di Oleggio Castello M; Nastase SA; Haxby JV; Gobbini MI
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2304085120. PubMed ID: 37847731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.
    Kriegeskorte N
    Annu Rev Vis Sci; 2015 Nov; 1():417-446. PubMed ID: 28532370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.
    Wingfield C; Su L; Liu X; Zhang C; Woodland P; Thwaites A; Fonteneau E; Marslen-Wilson WD
    PLoS Comput Biol; 2017 Sep; 13(9):e1005617. PubMed ID: 28945744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Neurodegeneration
    Tuladhar A; Moore JA; Ismail Z; Forkert ND
    Front Neuroinform; 2021; 15():748370. PubMed ID: 34867256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex.
    Livezey JA; Bouchard KE; Chang EF
    PLoS Comput Biol; 2019 Sep; 15(9):e1007091. PubMed ID: 31525179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representations and generalization in artificial and brain neural networks.
    Li Q; Sorscher B; Sompolinsky H
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311805121. PubMed ID: 38913896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.
    Evans S; Davis MH
    Cereb Cortex; 2015 Dec; 25(12):4772-88. PubMed ID: 26157026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successes and critical failures of neural networks in capturing human-like speech recognition.
    Adolfi F; Bowers JS; Poeppel D
    Neural Netw; 2023 May; 162():199-211. PubMed ID: 36913820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.
    Kell AJE; Yamins DLK; Shook EN; Norman-Haignere SV; McDermott JH
    Neuron; 2018 May; 98(3):630-644.e16. PubMed ID: 29681533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.