These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36618982)

  • 1. Application of a deep generative model produces novel and diverse functional peptides against microbial resistance.
    Mao J; Guan S; Chen Y; Zeb A; Sun Q; Lu R; Dong J; Wang J; Cao D
    Comput Struct Biotechnol J; 2023; 21():463-471. PubMed ID: 36618982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides.
    Van Oort CM; Ferrell JB; Remington JM; Wshah S; Li J
    J Chem Inf Model; 2021 May; 61(5):2198-2207. PubMed ID: 33787250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of antimicrobial peptides from the human gut microbiome using deep learning.
    Ma Y; Guo Z; Xia B; Zhang Y; Liu X; Yu Y; Tang N; Tong X; Wang M; Ye X; Feng J; Chen Y; Wang J
    Nat Biotechnol; 2022 Jun; 40(6):921-931. PubMed ID: 35241840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses.
    Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J
    Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks.
    Zervou MA; Doutsi E; Pantazis Y; Tsakalides P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization.
    Wang R; Wang T; Zhuo L; Wei J; Fu X; Zou Q; Yao X
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent Neural Network Model for Constructive Peptide Design.
    Müller AT; Hiss JA; Schneider G
    J Chem Inf Model; 2018 Feb; 58(2):472-479. PubMed ID: 29355319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI4AMP: an Antimicrobial Peptide Predictor Using Physicochemical Property-Based Encoding Method and Deep Learning.
    Lin TT; Yang LY; Lu IH; Cheng WC; Hsu ZR; Chen SH; Lin CY
    mSystems; 2021 Dec; 6(6):e0029921. PubMed ID: 34783578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets.
    Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM
    Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modifications to increase the therapeutic potential of antimicrobial peptides.
    Han Y; Zhang M; Lai R; Zhang Z
    Peptides; 2021 Dec; 146():170666. PubMed ID: 34600037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging family-specific signatures for AMP discovery and high-throughput annotation.
    Waghu FH; Barai RS; Idicula-Thomas S
    Sci Rep; 2016 Apr; 6():24684. PubMed ID: 27089856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.
    Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y
    Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Penetrating Antimicrobial Peptides Derived from an Atypical Staphylococcal δ-Toxin.
    Deeyagahage K; Ruzzini A
    Microbiol Spectr; 2021 Dec; 9(3):e0158421. PubMed ID: 34937169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.