These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36618982)

  • 41. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attention-Based Models for Classifying Small Data Sets Using Community-Engaged Research Protocols: Classification System Development and Validation Pilot Study.
    Ferrell BJ; Raskin SE; Zimmerman EB; Timberline DH; McInnes BT; Krist AH
    JMIR Form Res; 2022 Sep; 6(9):e32460. PubMed ID: 36066925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design.
    Li J; Koh JJ; Liu S; Lakshminarayanan R; Verma CS; Beuerman RW
    Front Neurosci; 2017; 11():73. PubMed ID: 28261050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction.
    Dean SN; Alvarez JAE; Zabetakis D; Walper SA; Malanoski AP
    Front Microbiol; 2021; 12():725727. PubMed ID: 34659152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage Genetic Edition Using LSTM.
    Ataee S; Brochet X; Peña-Reyes CA
    Front Bioinform; 2022; 2():932319. PubMed ID: 36353213
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Antimicrobial Peptides Designed Using a Recurrent Neural Network Reduce Mortality in Experimental Sepsis.
    Bolatchiev A; Baturin V; Shchetinin E; Bolatchieva E
    Antibiotics (Basel); 2022 Mar; 11(3):. PubMed ID: 35326874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimicrobial Peptides: From Design to Clinical Application.
    Zhang C; Yang M
    Antibiotics (Basel); 2022 Mar; 11(3):. PubMed ID: 35326812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antimicrobial Peptides Prediction method based on sequence multidimensional feature embedding.
    Dong B; Li M; Jiang B; Gao B; Li D; Zhang T
    Front Genet; 2022; 13():1069558. PubMed ID: 36468005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.
    Dutta P; Das S
    Curr Top Med Chem; 2016; 16(1):99-129. PubMed ID: 26139111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibody design using LSTM based deep generative model from phage display library for affinity maturation.
    Saka K; Kakuzaki T; Metsugi S; Kashiwagi D; Yoshida K; Wada M; Tsunoda H; Teramoto R
    Sci Rep; 2021 Mar; 11(1):5852. PubMed ID: 33712669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens.
    Li C; Sutherland D; Hammond SA; Yang C; Taho F; Bergman L; Houston S; Warren RL; Wong T; Hoang LMN; Cameron CE; Helbing CC; Birol I
    BMC Genomics; 2022 Jan; 23(1):77. PubMed ID: 35078402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of Antimicrobial Peptides in Treatment and Prevention of Mycobacterium Tuberculosis: A Review.
    Mehta K; Sharma P; Mujawar S; Vyas A
    Int J Pept Res Ther; 2022; 28(5):132. PubMed ID: 35891800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation.
    Jiang Y; Chen Y; Song Z; Tan Z; Cheng J
    Adv Drug Deliv Rev; 2021 Mar; 170():261-280. PubMed ID: 33400958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antimicrobial Peptides: the Achilles' Heel of Antibiotic Resistance?
    Lewies A; Du Plessis LH; Wentzel JF
    Probiotics Antimicrob Proteins; 2019 Jun; 11(2):370-381. PubMed ID: 30229514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
    Waghu FH; Barai RS; Gurung P; Idicula-Thomas S
    Nucleic Acids Res; 2016 Jan; 44(D1):D1094-7. PubMed ID: 26467475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.
    Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP
    Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.