BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36618990)

  • 1. Phosphoproteomics data-driven signalling network inference: Does it work?
    Sriraja LO; Werhli A; Petsalaki E
    Comput Struct Biotechnol J; 2023; 21():432-443. PubMed ID: 36618990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KSFinder-a knowledge graph model for link prediction of novel phosphorylated substrates of kinases.
    Anandakrishnan M; Ross KE; Chen C; Shanker V; Cowart J; Wu CH
    PeerJ; 2023; 11():e16164. PubMed ID: 37818330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global phosphosite-correlated network map of Thousand And One Kinase 1 (TAOK1).
    Priyanka P; Gopalakrishnan AP; Nisar M; Shivamurthy PB; George M; John L; Sanjeev D; Yandigeri T; Thomas SD; Rafi A; Dagamajalu S; Velikkakath AKG; Abhinand CS; Kanekar S; Prasad TSK; Balaya RDA; Raju R
    Int J Biochem Cell Biol; 2024 May; 170():106558. PubMed ID: 38479581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network.
    Hernandez M; Lachmann A; Zhao S; Xiao K; Ma'ayan A
    Proc IEEE Int Symp Bioinformatics Bioeng; 2010; 2010():180-184. PubMed ID: 21552464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SnapKin: a snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data.
    Xiao D; Lin M; Liu C; Geddes TA; Burchfield JG; Parker BL; Humphrey SJ; Yang P
    NAR Genom Bioinform; 2023 Dec; 5(4):lqad099. PubMed ID: 37954574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events.
    Patrick R; Lê Cao KA; Kobe B; Bodén M
    Bioinformatics; 2015 Feb; 31(3):382-9. PubMed ID: 25304781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring pathway database coverage of the phosphoproteome.
    Huckstep H; Fearnley LG; Davis MJ
    PeerJ; 2021; 9():e11298. PubMed ID: 34113485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Kinase-to-Phosphosite Database (iKiP-DB) Predicts Kinase Activity in Phosphoproteomic Datasets.
    Mari T; Mösbauer K; Wyler E; Landthaler M; Drosten C; Selbach M
    J Proteome Res; 2022 Jun; 21(6):1575-1587. PubMed ID: 35608653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
    Xue B; Jordan B; Rizvi S; Naegle KM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008681. PubMed ID: 33556051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network.
    Damle NP; Mohanty D
    Bioinformatics; 2014 Jun; 30(12):1730-8. PubMed ID: 24574117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of kinase-signaling networks in human myeloid cell line models by Phosphoproteomics using kinase activity enrichment analysis (KAEA).
    Hallal M; Braga-Lagache S; Jankovic J; Simillion C; Bruggmann R; Uldry AC; Allam R; Heller M; Bonadies N
    BMC Cancer; 2021 Jul; 21(1):789. PubMed ID: 34238254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics.
    Affeldt S; Verny L; Isambert H
    BMC Bioinformatics; 2016 Jan; 17 Suppl 2(Suppl 2):12. PubMed ID: 26823190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-based kinase activity inference identifies MK2 as driver of colitis.
    Strasser SD; Ghazi PC; Starchenko A; Boukhali M; Edwards A; Suarez-Lopez L; Lyons J; Changelian PS; Monahan JB; Jacobsen J; Brubaker DK; Joughin BA; Yaffe MB; Haas W; Lauffenburger DA; Haigis KM
    Integr Biol (Camb); 2019 Nov; 11(7):301-314. PubMed ID: 31617572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis.
    Yang P; Patrick E; Humphrey SJ; Ghazanfar S; James DE; Jothi R; Yang JY
    Proteomics; 2016 Jul; 16(13):1868-71. PubMed ID: 27145998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.