BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36619343)

  • 1. Research of storable and ready-to-use artificial red blood cells (hemoglobin vesicles) for emergency medicine and other clinical applications.
    Sakai H; Kure T; Taguchi K; Azuma H
    Front Med Technol; 2022; 4():1048951. PubMed ID: 36619343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of Potential Clinical Applications of Hemoglobin Vesicles (HbV) as Artificial Red Cells, Evidenced by Preclinical Studies of the Academic Research Consortium.
    Sakai H
    J Funct Biomater; 2017 Mar; 8(1):. PubMed ID: 28294960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Artificial Red Blood Cells (Hemoglobin Vesicles) Using the Rotation-Revolution Mixer for High Encapsulation Efficiency.
    Kure T; Sakai H
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2835-2844. PubMed ID: 34029046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational Research of Hemoglobin Vesicles as a Transfusion Alternative.
    Sakai H; Kobayashi N; Kure T; Okuda C
    Curr Med Chem; 2022; 29(3):591-606. PubMed ID: 33845721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood.
    Sakai H; Li B; Lim WL; Iga Y
    Bioconjug Chem; 2014 Jul; 25(7):1301-10. PubMed ID: 24877769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin-vesicle, a cellular artificial oxygen carrier that fulfils the physiological roles of the red blood cell structure.
    Sakai H; Sou K; Horinouchi H; Kobayashi K; Tsuchida E
    Adv Exp Med Biol; 2010; 662():433-8. PubMed ID: 20204826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of hemoglobin-vesicles as artificial oxygen carriers.
    Sakai H; Sou K; Horinouchi H; Kobayashi K; Tsuchida E
    Artif Organs; 2009 Feb; 33(2):139-45. PubMed ID: 19178458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of methemoglobin via electron transfer from photoreduced flavin: restoration of O2-binding of concentrated hemoglobin solution coencapsulated in phospholipid vesicles.
    Sakai H; Masada Y; Onuma H; Takeoka S; Tsuchida E
    Bioconjug Chem; 2004; 15(5):1037-45. PubMed ID: 15366957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin encapsulation in vesicles retards NO and CO binding and O2 release when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Sato A; Yamaue T; Takeoka S; Tsuchida E
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H956-65. PubMed ID: 20044441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the pH-controlled hemoglobin vesicles by CO2 gas.
    Park S; Kose T; Hamasaki M; Takeoka S; Nishide H; Tsuchida E
    Artif Cells Blood Substit Immobil Biotechnol; 1998 Nov; 26(5-6):497-506. PubMed ID: 9844716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swine hemoglobin as a potential source of artificial oxygen carriers, hemoglobin-vesicles.
    Sakai H; Ng K; Li B; Sugimura N
    Artif Cells Nanomed Biotechnol; 2013 Feb; 41(1):37-41. PubMed ID: 22992176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment of serum containing hemoglobin vesicles (oxygen carriers) to prevent their interference in laboratory tests.
    Sakai H; Tomiyama K; Masada Y; Takeoka S; Horinouchi H; Kobayashi K; Tsuchida E
    Clin Chem Lab Med; 2003 Feb; 41(2):222-31. PubMed ID: 12667011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetic study of enclosed hemoglobin and outer lipid component after the administration of hemoglobin vesicles as an artificial oxygen carrier.
    Taguchi K; Urata Y; Anraku M; Maruyama T; Watanabe H; Sakai H; Horinouchi H; Kobayashi K; Tsuchida E; Kai T; Otagiri M
    Drug Metab Dispos; 2009 Jul; 37(7):1456-63. PubMed ID: 19364827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.
    Kettisen K; Bülow L; Sakai H
    Bioconjug Chem; 2015 Apr; 26(4):746-54. PubMed ID: 25734688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin-vesicles as an artificial oxygen carrier.
    Sakai H; Sou K; Tsuchida E
    Methods Enzymol; 2009; 465():363-84. PubMed ID: 19913177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haemoglobin-vesicles as artificial oxygen carriers: present situation and future visions.
    Sakai H; Sou K; Horinouchi H; Kobayashi K; Tsuchida E
    J Intern Med; 2008 Jan; 263(1):4-15. PubMed ID: 18042220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry.
    Tsuchida E; Sou K; Nakagawa A; Sakai H; Komatsu T; Kobayashi K
    Bioconjug Chem; 2009 Aug; 20(8):1419-40. PubMed ID: 19206516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin vesicles containing methemoglobin and L-tyrosine to suppress methemoglobin formation in vitro and in vivo.
    Atoji T; Aihara M; Sakai H; Tsuchida E; Takeoka S
    Bioconjug Chem; 2006; 17(5):1241-5. PubMed ID: 16984134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.