These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36619373)

  • 1. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal bang-bang control for variable-order dengue virus; numerical studies.
    Sweilam NH; Al-Mekhlafi SM; Shatta SA
    J Adv Res; 2021 Sep; 32():37-44. PubMed ID: 34484824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing vector–host and SIR models for dengue transmission.
    Pandey A; Mubayi A; Medlock J
    Math Biosci; 2013 Dec; 246(2):252-9. PubMed ID: 24427785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian parameter estimation for nonlinear modelling of biological pathways.
    Ghasemi O; Lindsey ML; Yang T; Nguyen N; Huang Y; Jin YF
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S9. PubMed ID: 22784628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upstream flood pattern recognition based on downstream events.
    Bozorg-Haddad O; Hamedi F; Fallah-Mehdipour E; Loáiciga HA
    Environ Monit Assess; 2018 Apr; 190(5):306. PubMed ID: 29691671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia.
    Tosepu R; Tantrakarnapa K; Nakhapakorn K; Worakhunpiset S
    Environ Sci Pollut Res Int; 2018 May; 25(15):14944-14952. PubMed ID: 29549613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic model for the transmission dynamics of hepatitis B virus.
    Khan T; Jung IH; Zaman G
    J Biol Dyn; 2019 Dec; 13(1):328-344. PubMed ID: 30947627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method.
    Lee CH; Chang K; Chen YM; Tsai JT; Chen YJ; Ho WH
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):118. PubMed ID: 34749630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.
    Wu H; Xue H; Kumar A
    Biometrics; 2012 Jun; 68(2):344-52. PubMed ID: 22376200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation.
    Papadopoulos DF; Anastassi ZA; Simos TE
    J Mol Model; 2010 Aug; 16(8):1339-46. PubMed ID: 20127396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.
    Rackauckas C; Nie Q
    Discrete Continuous Dyn Syst Ser B; 2017; 22(7):2731-2761. PubMed ID: 29527134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Numerical methods for stochastic differential equations".
    Burrage K; Burrage P; Higham DJ; Kloeden PE; Platen E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):068701. PubMed ID: 17280180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Advance Computing Numerical Heuristic of Nonlinear SIR Dengue Fever System Using the Morlet Wavelet Kernel.
    Umar M; Sabir Z; Zahoor Raja MA; Al-Basyouni KS; Mahmoud SR; Sánchez YG
    J Healthc Eng; 2022; 2022():9981355. PubMed ID: 35140906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum Integration Procedure for Connectionist and Dynamic Field Equations.
    Rieznik A; Di Tella R; Schvartzman L; Babino A
    Front Neurorobot; 2021; 15():670895. PubMed ID: 34122034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakdown of a Nonlinear Stochastic Nipah Virus Epidemic Models through Efficient Numerical Methods.
    Raza A; Awrejcewicz J; Rafiq M; Mohsin M
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945894
    [No Abstract]   [Full Text] [Related]  

  • 20. High-order spatial discretisations in electrochemical digital simulation. Part 3. Combination with the explicit Runge-Kutta algorithm.
    Britz D; Osterby O; Strutwolf J; Svennesen TK
    Comput Chem; 2002 Jan; 26(2):97-103. PubMed ID: 11778943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.