These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3661999)

  • 1. On the choice of laser dyes for use in exciting tyrosine fluorescence decays.
    Libertini LJ; Small EW
    Anal Biochem; 1987 Jun; 163(2):500-5. PubMed ID: 3661999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biochemistry; 1987 Jan; 26(1):82-90. PubMed ID: 3828310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid state dye lasers: rhodamines in silica-zirconia materials.
    Schultheiss S; Yariv E; Reisfeld R; Breuer HD
    Photochem Photobiol Sci; 2002 May; 1(5):320-3. PubMed ID: 12653469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic aspects of rhodamine dye photosensitization in vitro with an argon-ion laser.
    Shea CR; Chen N; Hasan T
    Lasers Surg Med; 1989; 9(2):83-9. PubMed ID: 2716464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fluorescence enhancement and laser behavior of Rhodamine 6G in micell].
    Zhong X; Yang J; Ha Y; Meng J; Li Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):450-3. PubMed ID: 12945258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY; Belov VN; Bossi ML; Wurm CA; Meyer L; Medda R; Moneron G; Bretschneider S; Eggeling C; Jakobs S; Hell SW
    Chemistry; 2010 Apr; 16(15):4477-88. PubMed ID: 20309973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes.
    Tedder SA; Wheeler JL; Danehy PM
    Appl Opt; 2011 Feb; 50(6):901-14. PubMed ID: 21343970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biophys Chem; 1986 Jul; 24(2):97-100. PubMed ID: 3756310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser.
    Greenwald J; Rosen S; Anderson RR; Harrist T; MacFarland F; Noe J; Parrish JA
    J Invest Dermatol; 1981 Sep; 77(3):305-10. PubMed ID: 7264364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance liquid chromatographic quantitation of rhodamines 123 and 110 from tissues and cultured cells.
    Banes AJ; Link GW; Beckman WC; Camps JL; Powers SK
    J Chromatogr; 1986 Apr; 356(2):301-9. PubMed ID: 3711175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of mitochondria in living cells with rhodamine 123.
    Johnson LV; Walsh ML; Chen LB
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):990-4. PubMed ID: 6965798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Bright Rhodamines with Sulfobutylether-β-Cyclodextrin: A Viable Supramolecular Dye Laser in Aqueous Medium.
    Khurana R; Agarwalla S; Sridhar G; Barooah N; Bhasikuttan AC; Mohanty J
    Chemphyschem; 2018 Sep; 19(18):2349-2356. PubMed ID: 29947036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence and Time-Delayed Lasing during Single Laser Pulse Excitation of a Pendant mm-Sized Dye Droplet.
    Boni M; Andrei IR; Pascu ML; Staicu A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of argon lasers on human melanoma cells sensitized with rhodamine-123 in vitro.
    Castro DJ; Saxton RE; Fetterman HR; Castro DJ; Ward PH
    Am J Otolaryngol; 1988; 9(1):18-29. PubMed ID: 3358483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spectrophotometric study of several rhodamines commonly used in microscopy (1)].
    Parisi G; Santoro P
    Boll Soc Ital Biol Sper; 1982 Jun; 58(11):683-9. PubMed ID: 7115585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subnanosecond time-correlated photon counting with tunable lasers.
    Spears KG; Cramer LE; Hoffland LD
    Rev Sci Instrum; 1978 Feb; 49(2):255. PubMed ID: 18699071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attogram detection limit for aqueous dye samples by laser-induced fluorescence.
    Dovichi NJ; Martin JC; Jett JH; Keller RA
    Science; 1983 Feb; 219(4586):845-7. PubMed ID: 6823553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diode laser-pumped, frequency-doubled neodymium: YAG laser peripheral iridotomy.
    Abreu MM; Sierra RA; Netland PA
    Ophthalmic Surg Lasers; 1997 Apr; 28(4):305-10. PubMed ID: 9101569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer distributed feedback dye laser using Rhodamine B-Acid blue 7 dye mixture.
    Ahamed MB; Palanisamy PK
    J Photochem Photobiol B; 2003 Mar; 69(3):153-60. PubMed ID: 12695029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro. Analysis by real-time computer video microscopy and laser microspot excitation.
    Berns MW; Siemens AE; Walter RJ
    Cell Biophys; 1984 Dec; 6(4):263-77. PubMed ID: 6085560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.