These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36620077)

  • 1. Active Control of Plasmonic-Photonic Interactions in a Microbubble Cavity.
    Pan F; Karlsson K; Nixon AG; Hogan LT; Ward JM; Smith KC; Masiello DJ; Nic Chormaic S; Goldsmith RH
    J Phys Chem C Nanomater Interfaces; 2022 Dec; 126(48):20470-20479. PubMed ID: 36620077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic-Photonic Cavity.
    Pan F; Smith KC; Nguyen HL; Knapper KA; Masiello DJ; Goldsmith RH
    Nano Lett; 2020 Jan; 20(1):50-58. PubMed ID: 31424952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization.
    Thakkar N; Rea MT; Smith KC; Heylman KD; Quillin SC; Knapper KA; Horak EH; Masiello DJ; Goldsmith RH
    Nano Lett; 2017 Nov; 17(11):6927-6934. PubMed ID: 28968499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities.
    Lu Q; Li M; Liao J; Liu S; Wu X; Liu L; Xu L
    Opt Lett; 2015 Dec; 40(24):5842-5. PubMed ID: 26670526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic molecules with a tunable inter-cavity gap.
    Siegle T; Schierle S; Kraemmer S; Richter B; Wondimu SF; Schuch P; Koos C; Kalt H
    Light Sci Appl; 2017 Mar; 6(3):e16224. PubMed ID: 30167234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer.
    Hogan LT; Horak EH; Ward JM; Knapper KA; Nic Chormaic S; Goldsmith RH
    ACS Nano; 2019 Nov; 13(11):12743-12757. PubMed ID: 31614083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid photonic-plasmonic molecule based on metal/Si disks.
    Wang Q; Zhao H; Du X; Zhang W; Qiu M; Li Q
    Opt Express; 2013 May; 21(9):11037-47. PubMed ID: 23669960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single quantum dot controls a plasmonic cavity's scattering and anisotropy.
    Hartsfield T; Chang WS; Yang SC; Ma T; Shi J; Sun L; Shvets G; Link S; Li X
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12288-92. PubMed ID: 26372957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical microcavity: sensing down to single molecules and atoms.
    Yoshie T; Tang L; Su SY
    Sensors (Basel); 2011; 11(2):1972-91. PubMed ID: 22319393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of deep-subwavelength confinement in dielectric optical resonators.
    Hu S; Khater M; Salas-Montiel R; Kratschmer E; Engelmann S; Green WMJ; Weiss SM
    Sci Adv; 2018 Aug; 4(8):eaat2355. PubMed ID: 30151424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Whispering-Gallery-Mode Microbubble Sensors.
    Zhao X; Guo Z; Zhou Y; Guo J; Liu Z; Li Y; Luo M; Wu X
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities.
    Auad Y; Hamon C; Tencé M; Lourenço-Martins H; Mkhitaryan V; Stéphan O; García de Abajo FJ; Tizei LHG; Kociak M
    Nano Lett; 2022 Jan; 22(1):319-327. PubMed ID: 34907775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics.
    Kato S; Német N; Senga K; Mizukami S; Huang X; Parkins S; Aoki T
    Nat Commun; 2019 Mar; 10(1):1160. PubMed ID: 30858381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-mode field quantization for multiple emitters.
    Sánchez-Barquilla M; García-Vidal FJ; Fernández-Domínguez AI; Feist J
    Nanophotonics; 2022 Sep; 11(19):4363-4374. PubMed ID: 36147197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells.
    Paetzold UW; Lehnen S; Bittkau K; Rau U; Carius R
    Nano Lett; 2014 Nov; 14(11):6599-605. PubMed ID: 25350265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons.
    Chen X; Chen YH; Qin J; Zhao D; Ding B; Blaikie RJ; Qiu M
    Nano Lett; 2017 May; 17(5):3246-3251. PubMed ID: 28394619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Q surface-plasmon-polariton whispering-gallery microcavity.
    Min B; Ostby E; Sorger V; Ulin-Avila E; Yang L; Zhang X; Vahala K
    Nature; 2009 Jan; 457(7228):455-8. PubMed ID: 19158793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.