These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36620090)

  • 1. Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices.
    Zheng X; Chen TT; Jiang X; Naito M; Watanabe I
    Sci Technol Adv Mater; 2023; 24(1):2157682. PubMed ID: 36620090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial.
    Dewey MJ; Chang RSH; Nosatov AV; Janssen K; Crotts SJ; Hollister SJ; Harley BAC
    Acta Biomater; 2023 Dec; 172():249-259. PubMed ID: 37806375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption.
    Al Nashar M; Sutradhar A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of 3-D printed hydrogel lattices with anisotropic mechanical properties.
    Yoon D; Ruding M; Guertler CA; Okamoto RJ; Bayly PV
    J Mech Behav Biomed Mater; 2023 Feb; 138():105652. PubMed ID: 36610282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverting the structure-property map of truss metamaterials by deep learning.
    Bastek JH; Kumar S; Telgen B; Glaesener RN; Kochmann DM
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34983845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design procedure for triply periodic minimal surface based biomimetic scaffolds.
    Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M
    J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials.
    Abou-Ali AM; Lee DW; Abu Al-Rub RK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cell Geometry on the Mechanical Properties of 3D Voronoi Tessellation.
    Alknery Z; Sktani ZDI; Arab A
    J Funct Biomater; 2022 Dec; 13(4):. PubMed ID: 36547562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial.
    Dewey MJ; Chang RSH; Nosatov AV; Janssen K; Crotts SJ; Hollister SJ; Harley BAC
    bioRxiv; 2023 Sep; ():. PubMed ID: 37732275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing and Pulling on Ropes: Hierarchical Woven Materials.
    Moestopo WP; Mateos AJ; Fuller RM; Greer JR; Portela CM
    Adv Sci (Weinh); 2020 Oct; 7(20):2001271. PubMed ID: 33101856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated tissue growth in tetragonal lattices with mechanical stiffness tuned for bone tissue engineering.
    Arefin AME; Lahowetz M; Egan PF
    Comput Biol Med; 2021 Nov; 138():104913. PubMed ID: 34619409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Text-to-Microstructure Generation Using Generative Deep Learning.
    Zheng X; Watanabe I; Paik J; Li J; Guo X; Naito M
    Small; 2024 May; ():e2402685. PubMed ID: 38770745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastically Isotropic Truss-Plate-Hybrid Hierarchical Microlattices with Enhanced Modulus and Strength.
    Wang Y; Xu F; Gao H; Li X
    Small; 2023 May; 19(18):e2206024. PubMed ID: 36748308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.
    Mueller J; Raney JR; Shea K; Lewis JA
    Adv Mater; 2018 Mar; 30(12):e1705001. PubMed ID: 29359825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Criteria for Architected Materials with Programmable Mechanical Properties Within Theoretical Limit Ranges.
    Yin P; Li B; Hong J; Jing H; Li B; Liu H; Chen X; Lu Y; Shao J
    Adv Sci (Weinh); 2024 Mar; 11(9):e2307279. PubMed ID: 38084485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamaterials with engineered failure load and stiffness.
    Injeti SS; Daraio C; Bhattacharya K
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23960-23965. PubMed ID: 31712442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Architected Materials Inspired by Cubic Bravais Lattices.
    Libonati F; Graziosi S; Ballo F; Mognato M; Sala G
    ACS Biomater Sci Eng; 2023 Jul; 9(7):3935-3944. PubMed ID: 34309355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling particle-impact dissipation mechanisms in 3D architected materials.
    Butruille T; Crone JC; Portela CM
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2313962121. PubMed ID: 38306480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-enabled constrained multi-objective design of architected materials.
    Peng B; Wei Y; Qin Y; Dai J; Li Y; Liu A; Tian Y; Han L; Zheng Y; Wen P
    Nat Commun; 2023 Oct; 14(1):6630. PubMed ID: 37857648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.