BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 36620210)

  • 21. Salt Sensitivity of Blood Pressure in Blacks and Women: A Role of Inflammation, Oxidative Stress, and Epithelial Na
    Sahinoz M; Elijovich F; Ertuglu LA; Ishimwe J; Pitzer A; Saleem M; Mwesigwa N; Kleyman TR; Laffer CL; Kirabo A
    Antioxid Redox Signal; 2021 Dec; 35(18):1477-1493. PubMed ID: 34569287
    [No Abstract]   [Full Text] [Related]  

  • 22. Emerging Role of the Inflammasome and Pyroptosis in Hypertension.
    De Miguel C; Pelegrín P; Baroja-Mazo A; Cuevas S
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33494430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats.
    Li J; Teng X; Jin S; Dong J; Guo Q; Tian D; Wu Y
    J Hypertens; 2019 Aug; 37(8):1633-1643. PubMed ID: 31058793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation.
    Solini A; Menini S; Rossi C; Ricci C; Santini E; Blasetti Fantauzzi C; Iacobini C; Pugliese G
    J Pathol; 2013 Nov; 231(3):342-53. PubMed ID: 23843215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice.
    Krishnan SM; Dowling JK; Ling YH; Diep H; Chan CT; Ferens D; Kett MM; Pinar A; Samuel CS; Vinh A; Arumugam TV; Hewitson TD; Kemp-Harper BK; Robertson AA; Cooper MA; Latz E; Mansell A; Sobey CG; Drummond GR
    Br J Pharmacol; 2016 Feb; 173(4):752-65. PubMed ID: 26103560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure.
    Li N
    Am J Cardiovasc Dis; 2012; 2(3):208-15. PubMed ID: 22937490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.
    Bringmann A; Hollborn M; Kohen L; Wiedemann P
    Mol Vis; 2016; 22():1437-1454. PubMed ID: 28031693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inflammation in Salt-Sensitive Hypertension and Renal Damage.
    Lu X; Crowley SD
    Curr Hypertens Rep; 2018 Oct; 20(12):103. PubMed ID: 30377822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury.
    Ding W; Guo H; Xu C; Wang B; Zhang M; Ding F
    Oncotarget; 2016 Apr; 7(14):17479-91. PubMed ID: 27014913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-κB Pathway and NLRP3 Inflammasome.
    Shao A; Wu H; Hong Y; Tu S; Sun X; Wu Q; Zhao Q; Zhang J; Sheng J
    Mol Neurobiol; 2016 Jul; 53(5):3462-3476. PubMed ID: 26091790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VEGF-C attenuates renal damage in salt-sensitive hypertension.
    Beaini S; Saliba Y; Hajal J; Smayra V; Bakhos JJ; Joubran N; Chelala D; Fares N
    J Cell Physiol; 2019 Jun; 234(6):9616-9630. PubMed ID: 30378108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt intake, endothelial dysfunction, and salt-sensitive hypertension.
    Bragulat E; de la Sierra A
    J Clin Hypertens (Greenwich); 2002; 4(1):41-6. PubMed ID: 11821636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension.
    Chakraborty S; Galla S; Cheng X; Yeo JY; Mell B; Singh V; Yeoh B; Saha P; Mathew AV; Vijay-Kumar M; Joe B
    Cell Rep; 2018 Oct; 25(3):677-689.e4. PubMed ID: 30332647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inflammation, immunity, and hypertensive end-organ damage.
    McMaster WG; Kirabo A; Madhur MS; Harrison DG
    Circ Res; 2015 Mar; 116(6):1022-33. PubMed ID: 25767287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress and renal dysfunction in salt-sensitive hypertension.
    Trolliet MR; Rudd MA; Loscalzo J
    Kidney Blood Press Res; 2001; 24(2):116-23. PubMed ID: 11435744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathophysiology and genetics of salt-sensitive hypertension.
    Maaliki D; Itani MM; Itani HA
    Front Physiol; 2022; 13():1001434. PubMed ID: 36176775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium-sensitive essential hypertension: emerging insights into an old entity.
    Williams GH; Hollenberg NK
    J Am Coll Nutr; 1989 Dec; 8(6):490-4. PubMed ID: 2695548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of immune cells infiltrating the kidney in the pathogenesis of salt-sensitive hypertension.
    Rodríguez-Iturbe B; Quiroz Y; Herrera-Acosta J; Johnson RJ; Pons HA
    J Hypertens Suppl; 2002 Jun; 20(3):S9-14. PubMed ID: 12184057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.
    Rust P; Ekmekcioglu C
    Adv Exp Med Biol; 2017; 956():61-84. PubMed ID: 27757935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation.
    Li S; Lin Q; Shao X; Mou S; Gu L; Wang L; Zhang Z; Shen J; Zhou Y; Qi C; Jin H; Pang H; Ni Z
    Exp Cell Res; 2019 Oct; 383(1):111488. PubMed ID: 31276670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.