These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 36620394)

  • 1. Implantable intracortical microelectrodes: reviewing the present with a focus on the future.
    Wang Y; Yang X; Zhang X; Wang Y; Pei W
    Microsyst Nanoeng; 2023; 9():7. PubMed ID: 36620394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications.
    Jorfi M; Skousen JL; Weder C; Capadona JR
    J Neural Eng; 2015 Feb; 12(1):011001. PubMed ID: 25460808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain.
    Liu Y; Liu Z; Tian Y
    Acc Chem Res; 2022 Oct; 55(19):2821-2832. PubMed ID: 36074539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience.
    Lehongre K; Lambrecq V; Whitmarsh S; Frazzini V; Cousyn L; Soleil D; Fernandez-Vidal S; Mathon B; Houot M; Lemaréchal JD; Clemenceau S; Hasboun D; Adam C; Navarro V
    Neuroimage; 2022 Jul; 254():119116. PubMed ID: 35318150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.
    Fernández E; Greger B; House PA; Aranda I; Botella C; Albisua J; Soto-Sánchez C; Alfaro A; Normann RA
    Front Neuroeng; 2014; 7():24. PubMed ID: 25100989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of intracortical microelectrode recordings.
    Lempka SF; Johnson MD; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    J Neural Eng; 2011 Aug; 8(4):045006. PubMed ID: 21775783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis.
    Colachis SC; Dunlap CF; Annetta NV; Tamrakar SM; Bockbrader MA; Friedenberg DA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352736
    [No Abstract]   [Full Text] [Related]  

  • 13. Biocompatible Microelectrode for In Vivo Sensing with Improved Performance.
    Yin Y; Zeng H; Wang HM; Zhang M
    Langmuir; 2023 Feb; 39(5):1719-1729. PubMed ID: 36689914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density intracortical microelectrode arrays with multiple metallization layers for fine-resolution neuromonitoring and neurostimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):869-79. PubMed ID: 24122564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays.
    Du J; Riedel-Kruse IH; Nawroth JC; Roukes ML; Laurent G; Masmanidis SC
    J Neurophysiol; 2009 Mar; 101(3):1671-8. PubMed ID: 19091921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.
    Zhang S; Song Y; Wang M; Zhang Z; Fan X; Song X; Zhuang P; Yue F; Chan P; Cai X
    Biosens Bioelectron; 2016 Nov; 85():53-61. PubMed ID: 27155116
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.