These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36620447)

  • 41. BKB-SIN and ANL predict perceived communication ability in cochlear implant users.
    Donaldson GS; Chisolm TH; Blasco GP; Shinnick LJ; Ketter KJ; Krause JC
    Ear Hear; 2009 Aug; 30(4):401-10. PubMed ID: 19390441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Listening in Noise Remains a Significant Challenge for Cochlear Implant Users: Evidence from Early Deafened and Those with Progressive Hearing Loss Compared to Peers with Normal Hearing.
    Zaltz Y; Bugannim Y; Zechoval D; Kishon-Rabin L; Perez R
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32397101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of directional sound processing and listener's motivation on EEG responses to continuous noisy speech: Do normal-hearing and aided hearing-impaired listeners differ?
    Mirkovic B; Debener S; Schmidt J; Jaeger M; Neher T
    Hear Res; 2019 Jun; 377():260-270. PubMed ID: 31003037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing the Quality of Low-Frequency Acoustic Hearing: Implications for Combined Electroacoustic Stimulation With Cochlear Implants.
    Spitzer ER; Landsberger DM; Friedmann DR
    Ear Hear; 2021; 42(2):475-486. PubMed ID: 32976249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.
    Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ
    Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Event-related potentials for better speech perception in noise by cochlear implant users.
    Soshi T; Hisanaga S; Kodama N; Kanekama Y; Samejima Y; Yumoto E; Sekiyama K
    Hear Res; 2014 Oct; 316():110-21. PubMed ID: 25158303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Variability Sentence Recognition in Long-Term Cochlear Implant Users: Associations With Rapid Phonological Coding and Executive Functioning.
    Smith GNL; Pisoni DB; Kronenberger WG
    Ear Hear; 2019; 40(5):1149-1161. PubMed ID: 30601227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of speaking rate on recognition of synthetic and natural speech by normal-hearing and cochlear implant listeners.
    Ji C; Galvin JJ; Xu A; Fu QJ
    Ear Hear; 2013; 34(3):313-23. PubMed ID: 23238527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of spatial separation and noise type on sentence recognition by Mandarin-speaking cochlear implant users.
    Liu YW; Tao DD; Jiang Y; GalvinIII JJ; Fu QJ; Yuan YS; Chen B
    Acta Otolaryngol; 2017 Aug; 137(8):829-836. PubMed ID: 28296522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurophysiological Differences in Emotional Processing by Cochlear Implant Users, Extending Beyond the Realm of Speech.
    Deroche MLD; Felezeu M; Paquette S; Zeitouni A; Lehmann A
    Ear Hear; 2019; 40(5):1197-1209. PubMed ID: 30762600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise.
    Aronoff JM; Freed DJ; Fisher LM; Pal I; Soli SD
    Ear Hear; 2011; 32(4):468-84. PubMed ID: 21412155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individual Variations in Effort: Assessing Pupillometry for the Hearing Impaired.
    Wagner AE; Nagels L; Toffanin P; Opie JM; Başkent D
    Trends Hear; 2019; 23():2331216519845596. PubMed ID: 31131729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Intelligibility of Interrupted Speech: Cochlear Implant Users and Normal Hearing Listeners.
    Bhargava P; Gaudrain E; Başkent D
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):475-91. PubMed ID: 27090115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speech Recognition and Listening Effort in Cochlear Implant Recipients and Normal-Hearing Listeners.
    Abdel-Latif KHA; Meister H
    Front Neurosci; 2021; 15():725412. PubMed ID: 35221883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age-Related Changes in Listening Effort for Children and Teenagers With Normal Hearing and Cochlear Implants.
    Hsu BC; Vanpoucke F; Langereis M; Dierckx A; van Wieringen A
    Ear Hear; 2021; 42(3):506-519. PubMed ID: 33109991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users.
    Senkowski D; Pomper U; Fitzner I; Engel AK; Kral A
    Hum Brain Mapp; 2014 Jul; 35(7):3107-21. PubMed ID: 24123535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners.
    Summers V; Makashay MJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):274-92. PubMed ID: 23636209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selected cognitive factors and speech recognition performance among young and elderly listeners.
    Gordon-Salant S; Fitzgibbons PJ
    J Speech Lang Hear Res; 1997 Apr; 40(2):423-31. PubMed ID: 9130210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How Do You Deal With Uncertainty? Cochlear Implant Users Differ in the Dynamics of Lexical Processing of Noncanonical Inputs.
    McMurray B; Ellis TP; Apfelbaum KS
    Ear Hear; 2019; 40(4):961-980. PubMed ID: 30531260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of sensorineural hearing loss and personal hearing AIDS on cortical event-related potential and behavioral measures of speech-sound processing.
    Korczak PA; Kurtzberg D; Stapells DR
    Ear Hear; 2005 Apr; 26(2):165-85. PubMed ID: 15809543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.