These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 36620751)
1. Integrative genomic and transcriptomic analyses of a bud sport mutant 'Jinzao Wuhe' with the phenotype of large berries in grapevines. Huang J; Zhang G; Li Y; Lyu M; Zhang H; Zhang N; Chen R PeerJ; 2023; 11():e14617. PubMed ID: 36620751 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. Muñoz-Espinoza C; Di Genova A; Correa J; Silva R; Maass A; González-Agüero M; Orellana A; Hinrichsen P BMC Plant Biol; 2016 Apr; 16():104. PubMed ID: 27118480 [TBL] [Abstract][Full Text] [Related]
3. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Chai L; Li Y; Chen S; Perl A; Zhao F; Ma H Plant Sci; 2014 Dec; 229():215-224. PubMed ID: 25443848 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptomic analysis between 'Summer Black' and its bud sport 'Nantaihutezao' during developmental stages. Leng F; Ye Y; Zhu X; Zhang Y; Zhang Z; Shi J; Shen N; Jia H; Wang L Planta; 2021 Jan; 253(1):23. PubMed ID: 33403440 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614 [TBL] [Abstract][Full Text] [Related]
6. Comparative RNA-Seq profiling of berry development between table grape 'Kyoho' and its early-ripening mutant 'Fengzao'. Guo DL; Xi FF; Yu YH; Zhang XY; Zhang GH; Zhong GY BMC Genomics; 2016 Oct; 17(1):795. PubMed ID: 27729006 [TBL] [Abstract][Full Text] [Related]
7. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
9. Identification of the defense-related gene Zhang Y; Yao JL; Feng H; Jiang J; Fan X; Jia YF; Wang R; Liu C Hereditas; 2019; 156():14. PubMed ID: 31057347 [TBL] [Abstract][Full Text] [Related]
10. Identification of SNPs and InDels associated with berry size in table grapes integrating genetic and transcriptomic approaches. Muñoz-Espinoza C; Di Genova A; Sánchez A; Correa J; Espinoza A; Meneses C; Maass A; Orellana A; Hinrichsen P BMC Plant Biol; 2020 Aug; 20(1):365. PubMed ID: 32746778 [TBL] [Abstract][Full Text] [Related]
12. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant. Nwafor CC; Gribaudo I; Schneider A; Wehrens R; Grando MS; Costantini L BMC Genomics; 2014 Nov; 15(1):1030. PubMed ID: 25431125 [TBL] [Abstract][Full Text] [Related]
14. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. Maillot P; Velt A; Rustenholz C; Butterlin G; Merdinoglu D; Duchêne E BMC Plant Biol; 2021 Oct; 21(1):487. PubMed ID: 34696712 [TBL] [Abstract][Full Text] [Related]
15. Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Massonnet M; Fasoli M; Tornielli GB; Altieri M; Sandri M; Zuccolotto P; Paci P; Gardiman M; Zenoni S; Pezzotti M Plant Physiol; 2017 Aug; 174(4):2376-2396. PubMed ID: 28652263 [TBL] [Abstract][Full Text] [Related]
16. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Liang Z; Duan S; Sheng J; Zhu S; Ni X; Shao J; Liu C; Nick P; Du F; Fan P; Mao R; Zhu Y; Deng W; Yang M; Huang H; Liu Y; Ding Y; Liu X; Jiang J; Zhu Y; Li S; He X; Chen W; Dong Y Nat Commun; 2019 Mar; 10(1):1190. PubMed ID: 30867414 [TBL] [Abstract][Full Text] [Related]
17. From buds to shoots: insights into grapevine development from the Witch's Broom bud sport. Ritter EJ; Cousins P; Quigley M; Kile A; Kenchanmane Raju SK; Chitwood DH; Niederhuth C BMC Plant Biol; 2024 Apr; 24(1):283. PubMed ID: 38627633 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. Zombardo A; Crosatti C; Bagnaresi P; Bassolino L; Reshef N; Puccioni S; Faccioli P; Tafuri A; Delledonne M; Fait A; Storchi P; Cattivelli L; Mica E BMC Genomics; 2020 Jul; 21(1):468. PubMed ID: 32641089 [TBL] [Abstract][Full Text] [Related]
19. Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. Tello J; Torres-Pérez R; Grimplet J; Carbonell-Bejerano P; Martínez-Zapater JM; Ibáñez J BMC Plant Biol; 2015 Oct; 15():253. PubMed ID: 26499326 [TBL] [Abstract][Full Text] [Related]
20. Parallel Bud Mutation Sequencing Reveals that Fruit Sugar and Acid Metabolism Potentially Influence Stress in Zhao J; Shen F; Gao Y; Wang D; Wang K Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]