BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36620832)

  • 1. Impacts of Skin Eccrine Glands on the Measured Values of Transepidermal Water Loss.
    Schwab H; Flora J; Mayrovitz HN
    Cureus; 2022 Dec; 14(12):e32266. PubMed ID: 36620832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transepidermal water loss with and without sweat gland inactivation.
    Pinnagoda J; Tupker RA; Coenraads PJ; Nater JP
    Contact Dermatitis; 1989 Jul; 21(1):16-22. PubMed ID: 2805656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a handheld device accurately measure barrier function in ichthyoses?
    Murphrey MB; Erickson T; Canter T; Rangel SM; Paller AS
    Pediatr Dermatol; 2020 Sep; 37(5):860-863. PubMed ID: 32748517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis on the rates and regulation of insensible water loss through the eccrine sweat glands.
    Jeje A; Koon D
    J Theor Biol; 1989 Dec; 141(3):303-24. PubMed ID: 2630794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool.
    Alexander H; Brown S; Danby S; Flohr C
    J Invest Dermatol; 2018 Nov; 138(11):2295-2300.e1. PubMed ID: 30348333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic investigation of factors, such as the impact of emulsifiers, which influence the measurement of skin barrier integrity by in-vitro trans-epidermal water loss (TEWL).
    Schoenfelder H; Liu Y; Lunter DJ
    Int J Pharm; 2023 May; 638():122930. PubMed ID: 37028576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate extraction of human eccrine sweat gland activity and peripheral hemodynamics from high- and low-quality thermal imaging data.
    Sagaidachnyi A; Mayskov D; Fomin A; Zaletov I; Skripal A
    J Therm Biol; 2022 Dec; 110():103351. PubMed ID: 36462860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Normal" TEWL-how can it be defined? A systematic review.
    Green M; Feschuk AM; Kashetsky N; Maibach HI
    Exp Dermatol; 2022 Oct; 31(10):1618-1631. PubMed ID: 35753062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update.
    Akdeniz M; Gabriel S; Lichterfeld-Kottner A; Blume-Peytavi U; Kottner J
    Br J Dermatol; 2018 Nov; 179(5):1049-1055. PubMed ID: 30022486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepidermal water loss in cats: comparison of three differently clipped sites to assess the influence of hair coat on transepidermal water loss values.
    Momota Y; Shimada K; Takami A; Akaogi H; Takasaki M; Mimura K; Azakami D; Ishioka K; Nakamura Y; Sako T
    Vet Dermatol; 2013 Aug; 24(4):450-2, e100-1. PubMed ID: 23789740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transepidermal water loss (TEWL): Environment and pollution-A systematic review.
    Green M; Kashetsky N; Feschuk A; Maibach HI
    Skin Health Dis; 2022 Jun; 2(2):e104. PubMed ID: 35677917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepidermal Water Loss in Psoriasis: A Case-control Study.
    Nikam VN; Monteiro RC; Dandakeri S; Bhat RM
    Indian Dermatol Online J; 2019; 10(3):267-271. PubMed ID: 31149569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Devices measuring transepidermal water loss: A systematic review of measurement properties.
    Klotz T; Ibrahim A; Maddern G; Caplash Y; Wagstaff M
    Skin Res Technol; 2022 Jul; 28(4):497-539. PubMed ID: 35411958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro transepidermal water loss: differences between black and white human skin.
    Wilson D; Berardesca E; Maibach HI
    Br J Dermatol; 1988 Nov; 119(5):647-52. PubMed ID: 3207618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between transepidermal water loss and temperature of the measuring probe.
    Thoma S; Welzel J; Wilhelm KP
    Skin Res Technol; 1997 Feb; 3(1):73-80. PubMed ID: 27333178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of continuous electrical capacitance and transepidermal water loss measurements for assessing barrier function in neonatal rat skin.
    Wickett RR; Nath V; Tanaka R; Hoath SB
    Skin Pharmacol; 1995; 8(4):179-85. PubMed ID: 7488394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of transepidermal water loss (TEWL) on conventional and microclimate management capable mattresses and hospital beds.
    Denzinger M; Rothenberger J; Held M; Joss L; Ehnert S; Kolbenschlag J; Daigeler A; Krauss S
    J Tissue Viability; 2019 Nov; 28(4):194-199. PubMed ID: 31272882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin Barrier Function Assessment: Electrical Impedance Spectroscopy Is Less Influenced by Daily Routine Activities Than Transepidermal Water Loss.
    Huygen L; Thys PM; Wollenberg A; Gutermuth J; Krohn IK
    Ann Dermatol; 2024 Apr; 36(2):99-111. PubMed ID: 38576248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method.
    Tagami H; Kobayashi H; Kikuchi K
    Skin Res Technol; 2002 Feb; 8(1):7-12. PubMed ID: 12005122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of measuring the transepidermal water loss (TEWL) of dog skin.
    Yoshihara T; Shimada K; Momoi Y; Konno K; Iwasaki T
    J Vet Med Sci; 2007 Mar; 69(3):289-92. PubMed ID: 17409646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.