These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36620901)

  • 1. Detection of unintended on-target effects in CRISPR genome editing by DNA donors carrying diagnostic substitutions.
    Lackner M; Helmbrecht N; Pääbo S; Riesenberg S
    Nucleic Acids Res; 2023 Mar; 51(5):e26. PubMed ID: 36620901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping.
    Weisheit I; Kroeger JA; Malik R; Wefers B; Lichtner P; Wurst W; Dichgans M; Paquet D
    Nat Protoc; 2021 Mar; 16(3):1714-1739. PubMed ID: 33597771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FokI-dCas9 mediates high-fidelity genome editing in pigs.
    Fisicaro N; Salvaris EJ; Philip GK; Wakefield MJ; Nottle MB; Hawthorne WJ; Cowan PJ
    Xenotransplantation; 2020 Jan; 27(1):e12551. PubMed ID: 31407391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteroduplex cleavage assay for screening of probable zygosities resulting from CRISPR mutations in diploid single cell lines.
    Luttgeharm KD; Wong KS; Siembieda S
    Biotechniques; 2017 Jun; 62(6):268-274. PubMed ID: 28625156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
    Hess GT; Tycko J; Yao D; Bassik MC
    Mol Cell; 2017 Oct; 68(1):26-43. PubMed ID: 28985508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of CRISPR technology for precise single-base genome editing: a brief review.
    Lee HK; Oh Y; Hong J; Lee SH; Hur JK
    BMB Rep; 2021 Feb; 54(2):98-105. PubMed ID: 33298245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing.
    Gao K; Zhang X; Zhang Z; Wu X; Guo Y; Fu P; Sun A; Peng J; Zheng J; Yu P; Wang T; Ye Q; Jiang J; Wang H; Lin CP; Gao G
    Nucleic Acids Res; 2022 Oct; 50(19):e109. PubMed ID: 35929067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system.
    Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z
    J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing by CRISPR-Mb3Cas12a in mice.
    Wang Z; Wang Y; Wang S; Gorzalski AJ; McSwiggin H; Yu T; Castaneda-Garcia K; Prince B; Wang H; Zheng H; Yan W
    J Cell Sci; 2020 May; 133(9):. PubMed ID: 32393674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
    Paix A; Folkmann A; Seydoux G
    Methods; 2017 May; 121-122():86-93. PubMed ID: 28392263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants.
    Codner GF; Mianné J; Caulder A; Loeffler J; Fell R; King R; Allan AJ; Mackenzie M; Pike FJ; McCabe CV; Christou S; Joynson S; Hutchison M; Stewart ME; Kumar S; Simon MM; Agius L; Anstee QM; Volynski KE; Kullmann DM; Wells S; Teboul L
    BMC Biol; 2018 Jun; 16(1):70. PubMed ID: 29925374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR base editing applications for identifying cancer-driving mutations.
    Pal M; Herold MJ
    Biochem Soc Trans; 2021 Feb; 49(1):269-280. PubMed ID: 33449100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.