These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36620915)

  • 41. Effect of binder type and lubrication method on the binder efficacy for direct compression.
    de Backere C; De Beer T; Vervaet C; Vanhoorne V
    Int J Pharm; 2021 Sep; 607():120968. PubMed ID: 34358542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative evaluation of tablet lubricants: effect of application method on tablet hardness and ejectability after compression.
    Matsuda Y; Minamida Y; Hayashi SI
    J Pharm Sci; 1976 Aug; 65(8):1155-60. PubMed ID: 978434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of unintentional and intentional process disturbances on tablet quality during long continuous manufacturing runs.
    Taipale-Kovalainen K; Karttunen AP; Niinikoski H; Ketolainen J; Korhonen O
    Eur J Pharm Sci; 2019 Mar; 129():10-20. PubMed ID: 30550973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Converting a batch based high-shear granulation process to a continuous dry granulation process; a demonstration with ketoprofen tablets.
    Taipale-Kovalainen K; Ketolainen J; Korhonen O; Ervasti T
    Eur J Pharm Sci; 2020 Aug; 151():105381. PubMed ID: 32464174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of the quantitative detection of a change in concentration of magnesium stearate in a feeder tube of tableting manufacture by real-time near-infrared spectroscopy.
    Sasakura D; Nakayama K; Chikuma T
    Pharmazie; 2015 Oct; 70(10):636-9. PubMed ID: 26601418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hollow filler-binders as excipients for direct compaction.
    Bolhuis GK; Eissens AC; Adrichem TP; Wesselingh JA; Frijlink HW
    Pharm Res; 2003 Mar; 20(3):515-8. PubMed ID: 12669977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of lubrication on density distributions of roller compacted ribbons.
    Miguélez-Morán AM; Wu CY; Seville JP
    Int J Pharm; 2008 Oct; 362(1-2):52-9. PubMed ID: 18602976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.
    Badal Tejedor M; Nordgren N; Schuleit M; Rutland MW; Millqvist-Fureby A
    Int J Pharm; 2015; 486(1-2):315-23. PubMed ID: 25841569
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes.
    Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K
    J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants.
    Almaya A; Aburub A
    AAPS PharmSciTech; 2008; 9(2):414-8. PubMed ID: 18431664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion.
    Démuth B; Farkas A; Balogh A; Bartosiewicz K; Kállai-Szabó B; Bertels J; Vigh T; Mensch J; Verreck G; Van Assche I; Marosi G; Nagy ZK
    J Pharm Sci; 2016 Sep; 105(9):2982-2988. PubMed ID: 27290626
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vegetable-derived magnesium stearate functionality evaluation by DM(3) approach.
    Haware RV; Dave VS; Kakarala B; Delaney S; Staton S; Munson E; Gupta MR; Stagner WC
    Eur J Pharm Sci; 2016 Jun; 89():115-24. PubMed ID: 27108117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of Alternative Metallic Stearates as Lubricants in Pharmaceutical Tablet Formulation.
    Yu D; Nie H
    AAPS PharmSciTech; 2022 Jul; 23(6):200. PubMed ID: 35882653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variations in the friction coefficients of tablet lubricants and relationship to their physicochemical properties.
    Baichwal AR; Augsburger LL
    J Pharm Pharmacol; 1988 Aug; 40(8):569-71. PubMed ID: 2907013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantification of lubricant activity of magnesium stearate by atomic force microscopy.
    Weber D; Pu Y; Cooney CL
    Drug Dev Ind Pharm; 2008 Oct; 34(10):1097-9. PubMed ID: 18777241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders.
    Uzondu B; Leung LY; Mao C; Yang CY
    Int J Pharm; 2018 May; 543(1-2):234-244. PubMed ID: 29621552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Critical Tools in Tableting Research: Using Compaction Simulator and Quality by Design (QbD) to Evaluate Lubricants' Effect in Direct Compressible Formulation.
    Jiwa N; Ozalp Y; Yegen G; Aksu B
    AAPS PharmSciTech; 2021 May; 22(4):151. PubMed ID: 33977355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lubrication empirical model to predict tensile strength of directly compressed powder blends.
    Nassar J; Williams B; Davies C; Lief K; Elkes R
    Int J Pharm; 2021 Jan; 592():119980. PubMed ID: 33069892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.