These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36621275)

  • 21. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.
    De Vleeschauwer K; Weustenraad J; Nolf C; Wolfs V; De Meulder B; Shannon K; Willems P
    Water Sci Technol; 2014; 70(11):1825-37. PubMed ID: 25500472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating catchment response to artificial rainfall from four weather generators for present and future climate.
    Sørup HJD; Davidsen S; Löwe R; Thorndahl SL; Borup M; Arnbjerg-Nielsen K
    Water Sci Technol; 2018 Jun; 77(11-12):2578-2588. PubMed ID: 29944123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.
    Launay MA; Dittmer U; Steinmetz H
    Water Res; 2016 Nov; 104():82-92. PubMed ID: 27518145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time model predictive and rule-based control with green infrastructures to reduce combined sewer overflows.
    Jean MÈ; Morin C; Duchesne S; Pelletier G; Pleau M
    Water Res; 2022 Aug; 221():118753. PubMed ID: 35749924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current and future approaches to wet weather flow management: A review.
    Peters PE; Zitomer DH
    Water Environ Res; 2021 Aug; 93(8):1179-1193. PubMed ID: 33393150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and sources apportionment of overflow pollution in urban separate stormwater systems inappropriately connected with sewage.
    Li Y; Zhou Y; Wang H; Jiang H; Yue Z; Zheng K; Wu B; Banahene P
    J Environ Manage; 2022 Feb; 303():114231. PubMed ID: 34906833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data.
    Mounce SR; Shepherd W; Sailor G; Shucksmith J; Saul AJ
    Water Sci Technol; 2014; 69(6):1326-33. PubMed ID: 24647201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study.
    Sandoval S; Torres A; Pawlowsky-Reusing E; Riechel M; Caradot N
    Water Sci Technol; 2013; 68(12):2683-90. PubMed ID: 24355858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.
    Ahm M; Thorndahl S; Nielsen JE; Rasmussen MR
    Water Sci Technol; 2016 Dec; 74(11):2683-2696. PubMed ID: 27973373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows.
    Joshi P; Leitão JP; Maurer M; Bach PM
    Water Res; 2021 Mar; 191():116780. PubMed ID: 33422977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A software-based sensor for combined sewer overflows.
    Leonhardt G; Fach S; Engelhard C; Kinzel H; Rauch W
    Water Sci Technol; 2012; 66(7):1475-82. PubMed ID: 22864433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the effect of spatial variances in historical rainfall time series to CSO performance evaluation.
    De Toffol S; De Simon Burström Y; Rauch W
    Water Sci Technol; 2006; 54(6-7):25-31. PubMed ID: 17120630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A case independent approach on the impact of climate change effects on combined sewer system performance.
    Kleidorfer M; Möderl M; Sitzenfrei R; Urich C; Rauch W
    Water Sci Technol; 2009; 60(6):1555-64. PubMed ID: 19759458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of particle size on diffuse particulate pollutants in combined sewer systems.
    Hu L; Zhao H
    Sci Total Environ; 2022 Nov; 846():157476. PubMed ID: 35868399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?
    Risch E; Gasperi J; Gromaire MC; Chebbo G; Azimi S; Rocher V; Roux P; Rosenbaum RK; Sinfort C
    Water Res; 2018 Jan; 128():412-423. PubMed ID: 29156311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial community composition and function in an urban waterway with combined sewer overflows before and after implementation of a stormwater storage pipe.
    Matsui K; Miki T
    PeerJ; 2023; 11():e14684. PubMed ID: 36650829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties.
    Manz BJ; Rodríguez JP; Maksimović C; McIntyre N
    Water Sci Technol; 2013; 68(1):68-75. PubMed ID: 23823541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic generation and disaggregation of hourly rainfall series for continuous hydrological modelling and flood control reservoir design.
    Hingray B; Monbaron E; Jarrar I; Favre AC; Consuegra D; Musy A
    Water Sci Technol; 2002; 45(2):113-9. PubMed ID: 11888173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the impact of retention-detention units on sewer surcharge and peak and annual runoff reduction.
    Locatelli L; Gabriel S; Mark O; Mikkelsen PS; Arnbjerg-Nielsen K; Taylor H; Bockhorn B; Larsen H; Kjølby MJ; Blicher AS; Binning PJ
    Water Sci Technol; 2015; 71(6):898-903. PubMed ID: 25812100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.