These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36621369)

  • 21. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?
    Christensen-Dalsgaard J; Brandt C; Wilson M; Wahlberg M; Madsen PT
    Biol Lett; 2011 Feb; 7(1):139-41. PubMed ID: 20826468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of Choline Agonism in the Inner Ear Hair Cell Nicotinic Acetylcholine Receptor Linked to the α10 Subunit.
    Moglie MJ; Marcovich I; Corradi J; Carpaneto Freixas AE; Gallino S; Plazas PV; Bouzat C; Lipovsek M; Elgoyhen AB
    Front Mol Neurosci; 2021; 14():639720. PubMed ID: 33613194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
    Santos-Sacchi J; Tan W
    J Neurosci; 2018 Jun; 38(24):5495-5506. PubMed ID: 29899032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of Endolymph Secretion and Endolymphatic Potential Generation in the Vertebrate Inner Ear.
    Köppl C; Wilms V; Russell IJ; Nothwang HG
    Brain Behav Evol; 2018; 92(1-2):1-31. PubMed ID: 30415265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea.
    Jeng JY; Ceriani F; Olt J; Brown SDM; Holley MC; Bowl MR; Johnson SL; Marcotti W
    J Physiol; 2020 Oct; 598(19):4339-4355. PubMed ID: 32710572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses.
    Katz E; Elgoyhen AB
    Front Syst Neurosci; 2014; 8():224. PubMed ID: 25520631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles.
    Dierkes K; Lindner B; Jülicher F
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18669-74. PubMed ID: 19015514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear.
    Reng D; Müller M; Smolders JW
    Audiol Neurootol; 2001; 6(2):66-78. PubMed ID: 11385180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Making an effort to listen: mechanical amplification in the ear.
    Hudspeth AJ
    Neuron; 2008 Aug; 59(4):530-45. PubMed ID: 18760690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
    Liberman MC; Gao J; He DZ; Wu X; Jia S; Zuo J
    Nature; 2002 Sep; 419(6904):300-4. PubMed ID: 12239568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hearing without a tympanic ear.
    Capshaw G; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35724322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hearing gene Prestin reunites echolocating bats.
    Li G; Wang J; Rossiter SJ; Jones G; Cotton JA; Zhang S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13959-64. PubMed ID: 18776049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.
    Womack MC; Christensen-Dalsgaard J; Hoke KL
    J Exp Biol; 2016 Oct; 219(Pt 20):3246-3252. PubMed ID: 27520654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of
    Smith ET; Pacentine I; Shipman A; Hill M; Nicolson T
    J Neurosci; 2020 Jun; 40(23):4457-4468. PubMed ID: 32371604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin.
    Lefler SM; Duncan RK; Goodman SS; Guinan JJ; Lichtenhan JT
    Front Surg; 2021; 8():687490. PubMed ID: 34676239
    [No Abstract]   [Full Text] [Related]  

  • 38. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians.
    Cortese M; Papal S; Pisciottano F; Elgoyhen AB; Hardelin JP; Petit C; Franchini LF; El-Amraoui A
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):2054-2059. PubMed ID: 28179572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear amplification, outer hair cells and prestin.
    Dallos P
    Curr Opin Neurobiol; 2008 Aug; 18(4):370-6. PubMed ID: 18809494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.