These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36621510)

  • 21. Satellite-derived cyanobacteria frequency and magnitude in headwaters & near-dam reservoir surface waters of the Southern U.S.
    Ignatius AR; Purucker ST; Schaeffer BA; Wolfe K; Urquhart E; Smith D
    Sci Total Environ; 2022 May; 822():153568. PubMed ID: 35114225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multivariate Chain-Bernoulli-based prediction model for cyanobacteria algal blooms at multiple stations in South Korea.
    Kim KB; Uranchimeg S; Kwon HH
    Environ Pollut; 2022 Nov; 313():120078. PubMed ID: 36075336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
    Liu M; Lu J
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):11036-53. PubMed ID: 24894753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment.
    Chapra SC; Boehlert B; Fant C; Bierman VJ; Henderson J; Mills D; Mas DML; Rennels L; Jantarasami L; Martinich J; Strzepek KM; Paerl HW
    Environ Sci Technol; 2017 Aug; 51(16):8933-8943. PubMed ID: 28650153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Early-warning and prediction technology of harmful algal bloom: a review].
    Kong HN; Wang XZ; He SB; Zheng XY; Wu DY
    Ying Yong Sheng Tai Xue Bao; 2009 Nov; 20(11):2813-9. PubMed ID: 20136021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyanobacterial Blooms Are Not a Result of Positive Selection by Freshwater Eutrophication.
    Yu Y; Cheng W; Chen X; Guo Q; Cao H
    Microbiol Spectr; 2022 Dec; 10(6):e0319422. PubMed ID: 36445094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms.
    Wang K; Mou X; Cao H; Struewing I; Allen J; Lu J
    Environ Pollut; 2021 Nov; 288():117682. PubMed ID: 34271516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A deep learning method for cyanobacterial harmful algae blooms prediction in Taihu Lake, China.
    Cao H; Han L; Li L
    Harmful Algae; 2022 Mar; 113():102189. PubMed ID: 35287935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking source waters.
    Clark JM; Schaeffer BA; Darling JA; Urquhart EA; Johnston JM; Ignatius A; Myer MH; Loftin KA; Werdell PJ; Stumpf RP
    Ecol Indic; 2017 Sep; 80():84-95. PubMed ID: 30245589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva.
    Derot J; Yajima H; Jacquet S
    Harmful Algae; 2020 Nov; 99():101906. PubMed ID: 33218452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous and Synoptic Assessment of Indian Inland Waters for Harmful Algae Blooms.
    Maniyar CB; Kumar A; Mishra DR
    Harmful Algae; 2022 Jan; 111():102160. PubMed ID: 35016766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress and opportunities in advancing near-term forecasting of freshwater quality.
    Lofton ME; Howard DW; Thomas RQ; Carey CC
    Glob Chang Biol; 2023 Apr; 29(7):1691-1714. PubMed ID: 36622168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales.
    Schaeffer BA; Urquhart E; Coffer M; Salls W; Stumpf RP; Loftin KA; Werdell PJ
    Ecol Indic; 2022 Jul; 140():1-14. PubMed ID: 36425672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model.
    Wynne TT; Stumpf RP; Tomlinson MC; Schwab DJ; Watabayashi GY; Christensen JD
    Ecol Appl; 2011 Oct; 21(7):2709-21. PubMed ID: 22073654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns.
    Chun SJ; Cui Y; Lee JJ; Choi IC; Oh HM; Ahn CY
    Water Res; 2020 Mar; 170():115326. PubMed ID: 31838363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world.
    Paerl HW; Barnard MA
    Harmful Algae; 2020 Jun; 96():101845. PubMed ID: 32560828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent Cyanobacteria Blooms in Artificial Water Bodies-An Effect of Environmental Conditions or the Result of Anthropogenic Change.
    Nowicka-Krawczyk P; Żelazna-Wieczorek J; Skrobek I; Ziułkiewicz M; Adamski M; Kaminski A; Żmudzki P
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms.
    Mishra DR; Kumar A; Ramaswamy L; Boddula VK; Das MC; Page BP; Weber SJ
    Harmful Algae; 2020 Jun; 96():101828. PubMed ID: 32560841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.