These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36621533)

  • 1. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues.
    Zhang F; Li M; Zhang J; Shi W; Kurgan L
    J Mol Biol; 2023 Jul; 435(14):167945. PubMed ID: 36621533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins.
    Zhang J; Ghadermarzi S; Kurgan L
    Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins.
    Zhang J; Basu S; Kurgan L
    Nucleic Acids Res; 2024 Jan; 52(2):e10. PubMed ID: 38048333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences.
    Zhang J; Kurgan L
    Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins.
    Zhang F; Li M; Zhang J; Kurgan L
    Nucleic Acids Res; 2023 Mar; 51(5):e25. PubMed ID: 36629262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection.
    Zhang F; Shi W; Zhang J; Zeng M; Li M; Kurgan L
    Bioinformatics; 2020 Dec; 36(Suppl_2):i735-i744. PubMed ID: 33381815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins.
    Katuwawala A; Kurgan L
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids.
    Wu Z; Basu S; Wu X; Kurgan L
    Protein Sci; 2023 Jan; 32(1):e4544. PubMed ID: 36519304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server.
    Barik A; Katuwawala A; Hanson J; Paliwal K; Zhou Y; Kurgan L
    J Mol Biol; 2020 May; 432(11):3379-3387. PubMed ID: 31870849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences.
    Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome.
    Chowdhury S; Zhang J; Kurgan L
    Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning.
    Katuwawala A; Zhao B; Kurgan L
    Bioinformatics; 2021 Dec; 38(1):115-124. PubMed ID: 34487138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction of Intrinsic Disorder in Proteins.
    Meng F; Uversky V; Kurgan L
    Curr Protoc Protein Sci; 2017 Apr; 88():2.16.1-2.16.14. PubMed ID: 28369666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
    Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L
    Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning.
    Klausen MS; Jespersen MC; Nielsen H; Jensen KK; Jurtz VI; Sønderby CK; Sommer MOA; Winther O; Nielsen M; Petersen B; Marcatili P
    Proteins; 2019 Jun; 87(6):520-527. PubMed ID: 30785653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of protein-level disorder predictions.
    Katuwawala A; Oldfield CJ; Kurgan L
    Brief Bioinform; 2020 Sep; 21(5):1509-1522. PubMed ID: 31616935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale.
    Yan J; Mizianty MJ; Filipow PL; Uversky VN; Kurgan L
    Biochim Biophys Acta; 2013 Aug; 1834(8):1671-80. PubMed ID: 23732563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.