BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36621624)

  • 1. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2.
    Sekaran S; Park S
    J Biol Chem; 2023 Feb; 299(2):102870. PubMed ID: 36621624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase.
    Fu X; Sokolova V; Webb KJ; Old W; Park S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13246-13251. PubMed ID: 30530678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two alternative mechanisms regulate the onset of chaperone-mediated assembly of the proteasomal ATPases.
    Nahar A; Fu X; Polovin G; Orth JD; Park S
    J Biol Chem; 2019 Apr; 294(16):6562-6577. PubMed ID: 30814255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfiguration of the proteasome during chaperone-mediated assembly.
    Park S; Li X; Kim HM; Singh CR; Tian G; Hoyt MA; Lovell S; Battaile KP; Zolkiewski M; Coffino P; Roelofs J; Cheng Y; Finley D
    Nature; 2013 May; 497(7450):512-6. PubMed ID: 23644457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones.
    Nahar A; Sokolova V; Sekaran S; Orth JD; Park S
    Cell Rep; 2022 Jun; 39(10):110918. PubMed ID: 35675778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexameric assembly of the proteasomal ATPases is templated through their C termini.
    Park S; Roelofs J; Kim W; Robert J; Schmidt M; Gygi SP; Finley D
    Nature; 2009 Jun; 459(7248):866-70. PubMed ID: 19412160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for proteasome formation controlled by an assembly chaperone nas2.
    Satoh T; Saeki Y; Hiromoto T; Wang YH; Uekusa Y; Yagi H; Yoshihara H; Yagi-Utsumi M; Mizushima T; Tanaka K; Kato K
    Structure; 2014 May; 22(5):731-43. PubMed ID: 24685148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved proline residues in the coiled coil-OB domain linkers of Rpt proteins facilitate eukaryotic proteasome base assembly.
    Cheng CL; Wong MK; Li Y; Hochstrasser M
    J Biol Chem; 2021; 296():100660. PubMed ID: 33862083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain.
    Singh CR; Lovell S; Mehzabeen N; Chowdhury WQ; Geanes ES; Battaile KP; Roelofs J
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):418-23. PubMed ID: 24699731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly.
    Sokolova V; Li F; Polovin G; Park S
    Sci Rep; 2015 Oct; 5():14909. PubMed ID: 26449534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding.
    Ehlinger A; Park S; Fahmy A; Lary JW; Cole JL; Finley D; Walters KJ
    Structure; 2013 May; 21(5):753-65. PubMed ID: 23562395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperone-mediated pathway of proteasome regulatory particle assembly.
    Roelofs J; Park S; Haas W; Tian G; McAllister FE; Huo Y; Lee BH; Zhang F; Shi Y; Gygi SP; Finley D
    Nature; 2009 Jun; 459(7248):861-5. PubMed ID: 19412159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails.
    Lee SH; Moon JH; Yoon SK; Yoon JB
    J Biol Chem; 2012 Mar; 287(12):9269-79. PubMed ID: 22275368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly.
    Tomko RJ; Funakoshi M; Schneider K; Wang J; Hochstrasser M
    Mol Cell; 2010 May; 38(3):393-403. PubMed ID: 20471945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein.
    Lee SY; De la Mota-Peynado A; Roelofs J
    J Biol Chem; 2011 Oct; 286(42):36641-51. PubMed ID: 21878651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone.
    Li F; Tian G; Langager D; Sokolova V; Finley D; Park S
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1548-1553. PubMed ID: 28137839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p.
    Takagi K; Kim S; Yukii H; Ueno M; Morishita R; Endo Y; Kato K; Tanaka K; Saeki Y; Mizushima T
    J Biol Chem; 2012 Apr; 287(15):12172-82. PubMed ID: 22334676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An asymmetric interface between the regulatory and core particles of the proteasome.
    Tian G; Park S; Lee MJ; Huck B; McAllister F; Hill CP; Gygi SP; Finley D
    Nat Struct Mol Biol; 2011 Oct; 18(11):1259-67. PubMed ID: 22037170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome.
    Kim YC; Li X; Thompson D; DeMartino GN
    J Biol Chem; 2013 Feb; 288(5):3334-45. PubMed ID: 23212908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly manual for the proteasome regulatory particle: the first draft.
    Park S; Tian G; Roelofs J; Finley D
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):6-13. PubMed ID: 20074027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.