These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36621693)

  • 1. Minicell-forming Escherichia coli mutant with increased chemical production capacity and tolerance to toxic compounds.
    Kim SJ; Oh MK
    Bioresour Technol; 2023 Mar; 371():128586. PubMed ID: 36621693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli.
    Atsumi S; Wu TY; Machado IM; Huang WC; Chen PY; Pellegrini M; Liao JC
    Mol Syst Biol; 2010 Dec; 6():449. PubMed ID: 21179021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal.
    Baez A; Cho KM; Liao JC
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1681-90. PubMed ID: 21547458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance.
    Jang YS; Yang J; Kim JK; Kim TI; Park YC; Kim IJ; Kim KH
    Biotechnol J; 2024 Jan; 19(1):e2300270. PubMed ID: 37799109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli.
    Song HS; Seo HM; Jeon JM; Moon YM; Hong JW; Hong YG; Bhatia SK; Ahn J; Lee H; Kim W; Park YC; Choi KY; Kim YG; Yang YH
    Biotechnol Bioeng; 2018 Aug; 115(8):1971-1978. PubMed ID: 29663332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity.
    Rodriguez GM; Atsumi S
    Microb Cell Fact; 2012 Jun; 11():90. PubMed ID: 22731523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.
    Seo HM; Jeon JM; Lee JH; Song HS; Joo HB; Park SH; Choi KY; Kim YH; Park K; Ahn J; Lee H; Yang YH
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):37-44. PubMed ID: 26660478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isobutanol production from cellobiose in Escherichia coli.
    Desai SH; Rabinovitch-Deere CA; Tashiro Y; Atsumi S
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3727-36. PubMed ID: 24430208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minicell-forming mutants of Escherichia coli: production of minicells and anucleate rods.
    Jaffé A; D'Ari R; Hiraga S
    J Bacteriol; 1988 Jul; 170(7):3094-101. PubMed ID: 2838458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.
    Song HS; Jeon JM; Kim HJ; Bhatia SK; Sathiyanarayanan G; Kim J; Won Hong J; Gi Hong Y; Young Choi K; Kim YG; Kim W; Yang YH
    Bioresour Technol; 2017 Dec; 245(Pt B):1430-1435. PubMed ID: 28629697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli.
    Gu P; Zhao S; Niu H; Li C; Jiang S; Zhou H; Li Q
    Microb Cell Fact; 2023 Sep; 22(1):196. PubMed ID: 37759284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering.
    Song HS; Jeon JM; Bhatia SK; Choi TR; Lee SM; Park SL; Lee HS; Yoon JJ; Ahn J; Lee H; Brigham CJ; Choi KY; Yang YH
    J Biotechnol; 2020 Aug; 320():66-73. PubMed ID: 32569791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minicells as a Damage Disposal Mechanism in Escherichia coli.
    Rang CU; Proenca A; Buetz C; Shi C; Chao L
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30232168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for the production of isobutanol: a review.
    Gu P; Liu L; Ma Q; Dong Z; Wang Q; Xu J; Huang Z; Li Q
    World J Microbiol Biotechnol; 2021 Sep; 37(10):168. PubMed ID: 34487256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary strategy for isobutanol production strain development in Escherichia coli.
    Smith KM; Liao JC
    Metab Eng; 2011 Nov; 13(6):674-81. PubMed ID: 21911074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli.
    Jung HM; Han JH; Oh MK
    Microb Biotechnol; 2021 Jan; 14(1):213-226. PubMed ID: 32954676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isobutanol production from cellobionic acid in Escherichia coli.
    Desai SH; Rabinovitch-Deere CA; Fan Z; Atsumi S
    Microb Cell Fact; 2015 Apr; 14():52. PubMed ID: 25889729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.
    Qi H; Li S; Zhao S; Huang D; Xia M; Wen J
    PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.