These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36621739)

  • 61. Marine Cellulases and their Biotechnological Significance from Industrial Perspectives.
    Navvabi A; Homaei A; Pletschke BI; Navvabi N; Kim SK
    Curr Pharm Des; 2022; 28(41):3325-3336. PubMed ID: 35388747
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Promising bioactive compounds from the marine environment and their potential effects on various diseases.
    Karthikeyan A; Joseph A; Nair BG
    J Genet Eng Biotechnol; 2022 Jan; 20(1):14. PubMed ID: 35080679
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry.
    Izadpanah Qeshmi F; Homaei A; Fernandes P; Javadpour S
    Microbiol Res; 2018 Mar; 208():99-112. PubMed ID: 29551216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems.
    Kennedy J; O'Leary ND; Kiran GS; Morrissey JP; O'Gara F; Selvin J; Dobson AD
    J Appl Microbiol; 2011 Oct; 111(4):787-99. PubMed ID: 21777355
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Marine-polysaccharide degrading enzymes: Status and prospects.
    Sun H; Gao L; Xue C; Mao X
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):2767-2796. PubMed ID: 33337030
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.
    Bhushan A; Peters EE; Piel J
    Prog Mol Subcell Biol; 2017; 55():291-314. PubMed ID: 28238042
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Marine biotechnology for production of food ingredients.
    Rasmussen RS; Morrissey MT
    Adv Food Nutr Res; 2007; 52():237-92. PubMed ID: 17425947
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.
    Chi Z; Chi Z; Zhang T; Liu G; Li J; Wang X
    Biotechnol Adv; 2009; 27(3):236-55. PubMed ID: 19215727
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Halophilic filamentous fungi and their enzymes: Potential biotechnological applications.
    Ben Hmad I; Gargouri A
    J Biotechnol; 2024 Feb; 381():11-18. PubMed ID: 38159888
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications.
    Coppola D; Oliviero M; Vitale GA; Lauritano C; D'Ambra I; Iannace S; de Pascale D
    Mar Drugs; 2020 Apr; 18(4):. PubMed ID: 32326635
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Towards a sustainable biobased industry - Highlighting the impact of extremophiles.
    Krüger A; Schäfers C; Schröder C; Antranikian G
    N Biotechnol; 2018 Jan; 40(Pt A):144-153. PubMed ID: 28512003
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications.
    Qeshmi FI; Homaei A; Fernandes P; Hemmati R; Dijkstra BW; Khajeh K
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140312. PubMed ID: 31740412
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Marine natural flavonoids: chemistry and biological activities.
    Martins BT; Correia da Silva M; Pinto M; Cidade H; Kijjoa A
    Nat Prod Res; 2019 Nov; 33(22):3260-3272. PubMed ID: 29726719
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lignocellulolytic extremozymes and their biotechnological applications.
    Sharma N; Agarwal A; Bijoy A; Pandit S; Sharma RK
    Extremophiles; 2023 Nov; 28(1):2. PubMed ID: 37950773
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Active substances from marine organisms in clinical trials and practice].
    Mareček D; Rudá-Kučerová J
    Ceska Slov Farm; 2018; 66(5):191-207. PubMed ID: 29623713
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives.
    Ambrosino L; Tangherlini M; Colantuono C; Esposito A; Sangiovanni M; Miralto M; Sansone C; Chiusano ML
    Mar Drugs; 2019 Oct; 17(10):. PubMed ID: 31614509
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics.
    Muriel-Millán LF; Millán-López S; Pardo-López L
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7171-7185. PubMed ID: 34515846
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploration of extremophiles for high temperature biotechnological processes.
    Elleuche S; Schäfers C; Blank S; Schröder C; Antranikian G
    Curr Opin Microbiol; 2015 Jun; 25():113-9. PubMed ID: 26066287
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Extremophiles and biotechnology: current uses and prospects.
    Coker JA
    F1000Res; 2016; 5():. PubMed ID: 27019700
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review.
    Hosseini H; Al-Jabri HM; Moheimani NR; Siddiqui SA; Saadaoui I
    J Basic Microbiol; 2022 Sep; 62(9):1030-1043. PubMed ID: 35467037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.