These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36621858)

  • 1. Quasi-static approximation error of electric field analysis for transcranial current stimulation.
    Gaugain G; Quéguiner L; Bikson M; Sauleau R; Zhadobov M; Modolo J; Nikolayev D
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36621858
    [No Abstract]   [Full Text] [Related]  

  • 2. Prospects for transcranial temporal interference stimulation in humans: A computational study.
    Rampersad S; Roig-Solvas B; Yarossi M; Kulkarni PP; Santarnecchi E; Dorval AD; Brooks DH
    Neuroimage; 2019 Nov; 202():116124. PubMed ID: 31473351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of transcranial alternating current stimulation on spiking activity in computational models of single neocortical neurons.
    Tran H; Shirinpour S; Opitz A
    Neuroimage; 2022 Apr; 250():118953. PubMed ID: 35093517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation.
    Huang X; Wei X; Wang J; Yi G
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38382101
    [No Abstract]   [Full Text] [Related]  

  • 5. Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo.
    Lee S; Shirinpour S; Alekseichuk I; Perera N; Linn G; Schroeder CE; Falchier AY; Opitz A
    Comput Biol Med; 2023 Nov; 166():107516. PubMed ID: 37769460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasistatic approximation in neuromodulation.
    Wang B; Peterchev AV; Gaugain G; Ilmoniemi RJ; Grill WM; Bikson M; Nikolayev D
    J Neural Eng; 2024 Jul; ():. PubMed ID: 38994790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.
    Negahbani E; Kasten FH; Herrmann CS; Fröhlich F
    Neuroimage; 2018 Jun; 173():3-12. PubMed ID: 29427848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities.
    Wang B; Aberra AS; Grill WM; Peterchev AV
    J Neural Eng; 2023 Jan; 19(6):. PubMed ID: 36594634
    [No Abstract]   [Full Text] [Related]  

  • 9. Quasistatic approximation in neuromodulation.
    Wang B; Peterchev AV; Gaugain G; Ilmoniemi RJ; Grill WM; Bikson M; Nikolayev D
    ArXiv; 2024 Apr; ():. PubMed ID: 38351938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling.
    Wartman WA; Weise K; Rachh M; Morales L; Deng ZD; Nummenmaa A; Makaroff SN
    Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38316038
    [No Abstract]   [Full Text] [Related]  

  • 11. A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation.
    Callejón-Leblic MA; Miranda PC
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33647895
    [No Abstract]   [Full Text] [Related]  

  • 12. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.
    Lee C; Jung YJ; Lee SJ; Im CH
    J Neurosci Methods; 2017 Feb; 277():56-62. PubMed ID: 27989592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Transcranial Magnetic Stimulation Based on the Surface Integral Equation Formulation.
    Cvetković M; Poljak D; Haueisen J
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1535-45. PubMed ID: 25608302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS).
    Haslacher D; Nasr K; Robinson SE; Braun C; Soekadar SR
    Neuroimage; 2021 Mar; 228():117571. PubMed ID: 33412281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects.
    Kasten FH; Duecker K; Maack MC; Meiser A; Herrmann CS
    Nat Commun; 2019 Nov; 10(1):5427. PubMed ID: 31780668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A principled approach to conductivity uncertainty analysis in electric field calculations.
    Saturnino GB; Thielscher A; Madsen KH; Knösche TR; Weise K
    Neuroimage; 2019 Mar; 188():821-834. PubMed ID: 30594684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.
    Manoli Z; Parazzini M; Ravazzani P; Samaras T
    Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. I
    Toloza EHS; Negahbani E; Fröhlich F
    J Neurophysiol; 2018 Mar; 119(3):1029-1036. PubMed ID: 29187553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation.
    Bossetti CA; Birdno MJ; Grill WM
    J Neural Eng; 2008 Mar; 5(1):44-53. PubMed ID: 18310810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.