These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36621896)
41. Cholesterol-conjugated poly(D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Kumari P; Muddineti OS; Rompicharla SV; Ghanta P; B B N AK; Ghosh B; Biswas S Drug Deliv; 2017 Nov; 24(1):209-223. PubMed ID: 28156164 [TBL] [Abstract][Full Text] [Related]
42. A multi-controlled drug delivery system based on magnetic mesoporous Fe Zhang Q; Liu J; Yuan K; Zhang Z; Zhang X; Fang X Nanotechnology; 2017 Oct; 28(40):405101. PubMed ID: 28837053 [TBL] [Abstract][Full Text] [Related]
43. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594 [TBL] [Abstract][Full Text] [Related]
44. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Sasikala ARK; Unnithan AR; Yun YH; Park CH; Kim CS Acta Biomater; 2016 Feb; 31():122-133. PubMed ID: 26687978 [TBL] [Abstract][Full Text] [Related]
45. Synergistic Theranostics of Magnetic Resonance Imaging and Photothermal Therapy of Breast Cancer Based on the Janus Nanostructures Fe Kang X; Sun T; Zhang L; Zhou C; Xu Z; Du M; Xiao S; Liu Y; Gong M; Zhang D Int J Nanomedicine; 2021; 16():6383-6394. PubMed ID: 34556986 [TBL] [Abstract][Full Text] [Related]
46. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Yallapu MM; Othman SF; Curtis ET; Bauer NA; Chauhan N; Kumar D; Jaggi M; Chauhan SC Int J Nanomedicine; 2012; 7():1761-79. PubMed ID: 22619526 [TBL] [Abstract][Full Text] [Related]
47. Indocyanine Green and Curcumin Co-Loaded Nano-Fireball-Like Albumin Nanoparticles Based on Near-Infrared-Induced Hyperthermia for Tumor Ablation. Pham PTT; Le XT; Kim H; Kim HK; Lee ES; Oh KT; Choi HG; Youn YS Int J Nanomedicine; 2020; 15():6469-6484. PubMed ID: 32943865 [TBL] [Abstract][Full Text] [Related]
48. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646 [TBL] [Abstract][Full Text] [Related]
49. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
50. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Kim HC; Kim E; Jeong SW; Ha TL; Park SI; Lee SG; Lee SJ; Lee SW Nanoscale; 2015 Oct; 7(39):16470-80. PubMed ID: 26395038 [TBL] [Abstract][Full Text] [Related]
51. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. Sivakumar B; Aswathy RG; Sreejith R; Nagaoka Y; Iwai S; Suzuki M; Fukuda T; Hasumura T; Yoshida Y; Maekawa T; Sakthikumar DN J Biomed Nanotechnol; 2014 Jun; 10(6):885-99. PubMed ID: 24749386 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Khalkhali M; Sadighian S; Rostamizadeh K; Khoeini F; Naghibi M; Bayat N; Habibizadeh M; Hamidi M Bioimpacts; 2015; 5(3):141-50. PubMed ID: 26457252 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of multifunctional magnetic nanoflakes for magnetic resonance imaging, hyperthermia, and targeting. Cervadoro A; Cho M; Key J; Cooper C; Stigliano C; Aryal S; Brazdeikis A; Leary JF; Decuzzi P ACS Appl Mater Interfaces; 2014 Aug; 6(15):12939-46. PubMed ID: 25003520 [TBL] [Abstract][Full Text] [Related]
54. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419 [TBL] [Abstract][Full Text] [Related]
55. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery. Ur Rahman MS; Tahir MA; Noreen S; Yasir M; Ahmad I; Khan MB; Ali KW; Shoaib M; Bahadur A; Iqbal S RSC Adv; 2020 Jun; 10(36):21413-21419. PubMed ID: 35518733 [TBL] [Abstract][Full Text] [Related]
56. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Tao C; Zhu Y Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592 [TBL] [Abstract][Full Text] [Related]
57. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421 [TBL] [Abstract][Full Text] [Related]
58. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Farzin A; Etesami SA; Quint J; Memic A; Tamayol A Adv Healthc Mater; 2020 May; 9(9):e1901058. PubMed ID: 32196144 [TBL] [Abstract][Full Text] [Related]
59. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Steeber DA; Gong S Biomaterials; 2010 Dec; 31(34):9065-73. PubMed ID: 20828811 [TBL] [Abstract][Full Text] [Related]
60. Hyperbranched Polymer-Functionalized Magnetic Nanoparticle-Mediated Hyperthermia and Niclosamide Bimodal Therapy of Colorectal Cancer Cells. Ahmad A; Gupta A; Ansari MM; Vyawahare A; Jayamurugan G; Khan R ACS Biomater Sci Eng; 2020 Feb; 6(2):1102-1111. PubMed ID: 33464864 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]