These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36622044)
21. eCry1Gb.1Ig, A Novel Chimeric Cry Protein with High Efficacy against Multiple Fall Armyworm ( Chae H; Wen Z; Hootman T; Himes J; Duan Q; McMath J; Ditillo J; Sessler R; Conville J; Niu Y; Matthews P; Francischini F; Huang F; Bramlett M Toxins (Basel); 2022 Dec; 14(12):. PubMed ID: 36548749 [No Abstract] [Full Text] [Related]
22. Effects of Site-Mutations Within the 22 kDa No-Core Fragment of the Vip3Aa11 Insecticidal Toxin of Bacillus thuringiensis. Liu M; Liu R; Luo G; Li H; Gao J Curr Microbiol; 2017 May; 74(5):655-659. PubMed ID: 28321527 [TBL] [Abstract][Full Text] [Related]
23. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Baranek J; Kaznowski A; Konecka E; Naimov S J Invertebr Pathol; 2015 Sep; 130():72-81. PubMed ID: 26146224 [TBL] [Abstract][Full Text] [Related]
24. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. Yang F; Santiago González JC; Sword GA; Kerns DL Pest Manag Sci; 2021 Mar; 77(3):1530-1535. PubMed ID: 33201547 [TBL] [Abstract][Full Text] [Related]
25. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Soares Figueiredo C; Nunes Lemes AR; Sebastião I; Desidério JA Appl Biochem Biotechnol; 2019 Jul; 188(3):798-809. PubMed ID: 30706415 [TBL] [Abstract][Full Text] [Related]
26. The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Quan Y; Yang J; Wang Y; Hernández-Martínez P; Ferré J; He K Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34065247 [TBL] [Abstract][Full Text] [Related]
27. The correlation of the presence and expression levels of cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains. Chen ML; Chen PH; Pang JC; Lin CW; Hwang CF; Tsen HY Toxins (Basel); 2014 Aug; 6(8):2453-70. PubMed ID: 25153253 [TBL] [Abstract][Full Text] [Related]
28. Sf-FGFR and Sf-SR-C Are Not the Receptors for Vip3Aa to Exert Insecticidal Toxicity in Shan Y; Jin M; Chakrabarty S; Yang B; Li Q; Cheng Y; Zhang L; Xiao Y Insects; 2022 Jun; 13(6):. PubMed ID: 35735884 [TBL] [Abstract][Full Text] [Related]
29. N-Terminal α-Helices in Domain I of Shao E; Huang H; Yuan J; Yan Y; Ou L; Chen X; Pan X; Guan X; Sha L Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393166 [No Abstract] [Full Text] [Related]
30. Molecular cloning and characterization of a novel vip3-type gene from Bacillus thuringiensis and evaluation of its toxicity against Helicoverpa armigera. Lone SA; Malik A; Padaria JC Microb Pathog; 2018 Jan; 114():464-469. PubMed ID: 29233779 [TBL] [Abstract][Full Text] [Related]
31. Diverse genetic basis of Vip3Aa resistance in five independent field-derived strains of Helicoverpa zea in the US. Yang F; Head GP; Kerns DD; Jurat-Fuentes JL; Santiago-González JC; Kerns DL Pest Manag Sci; 2024 Jun; 80(6):2796-2803. PubMed ID: 38327120 [TBL] [Abstract][Full Text] [Related]
32. PHB2 affects the virulence of Vip3Aa to Sf9 cells through internalization and mitochondrial stability. An B; Zhang Y; Li X; Hou X; Yan B; Cai J Virulence; 2022 Dec; 13(1):684-697. PubMed ID: 35400294 [TBL] [Abstract][Full Text] [Related]
34. Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. Zhu L; Tian LJ; Zheng J; Gao QL; Wang YY; Peng DH; Ruan LF; Sun M J Biotechnol; 2015 Feb; 195():108-9. PubMed ID: 25556027 [TBL] [Abstract][Full Text] [Related]
35. Susceptibilities of the Invasive Fall Armyworm ( Wang W; Zhang D; Zhao S; Wu K Toxins (Basel); 2022 Jul; 14(8):. PubMed ID: 35893749 [TBL] [Abstract][Full Text] [Related]
36. Coexistence of Wang Z; Wang K; Bravo A; Soberón M; Cai J; Shu C; Zhang J J Agric Food Chem; 2020 Nov; 68(47):14081-14090. PubMed ID: 33180493 [No Abstract] [Full Text] [Related]
37. Bacillus thuringiensis protein Vip3Aa does not harm the predator Propylea japonica: A toxicological, histopathological, biochemical and molecular analysis. Zhao Y; Yun Y; Peng Y Ecotoxicol Environ Saf; 2020 Apr; 192():110292. PubMed ID: 32035396 [TBL] [Abstract][Full Text] [Related]
38. A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae. Baranek J; Banaszak M; Kaznowski A; Lorent D Pest Manag Sci; 2021 Mar; 77(3):1401-1408. PubMed ID: 33099864 [TBL] [Abstract][Full Text] [Related]
39. Effective dominance and redundant killing of single- and dual-gene resistant populations of Helicoverpa zea on pyramided Bt corn and cotton. Santiago-González JC; Kerns DL; Head GP; Yang F Pest Manag Sci; 2022 Oct; 78(10):4333-4339. PubMed ID: 35750998 [TBL] [Abstract][Full Text] [Related]
40. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Syed T; Askari M; Meng Z; Li Y; Abid MA; Wei Y; Guo S; Liang C; Zhang R Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823872 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]